Bài học này cung cấp kiến thức nền tảng về hai mặt phẳng song song trong chương trình Hình học không gian lớp 11.
Chúng ta sẽ cùng tìm hiểu các định nghĩa, tính chất, điều kiện để hai mặt phẳng song song, và các ứng dụng thực tế của lý thuyết này.
Tusach.vn tổng hợp kiến thức từ SGK Toán 11 Kết Nối Tri Thức, giúp bạn nắm vững kiến thức một cách nhanh chóng và hiệu quả.
1. Hai mặt phẳng song song
1. Hai mặt phẳng song song
Hai mặt \(\left( \alpha \right)\) và \(\left( \beta \right)\) được gọi là song song với nhau nếu chúng không có điểm chung. Kí hiệu \(\left( \alpha \right)\)// \(\left( \beta \right)\) hay \(\left( \beta \right)\)//\(\left( \alpha \right)\).

*Nhận xét: \(\left\{ \begin{array}{l}\left( \alpha \right)//\left( \beta \right)\\d \subset \left( \alpha \right)\end{array} \right. \Rightarrow d//\left( \beta \right)\).
2. Điều kiện và tính chất của hai mặt phẳng song song
Nếu mặt phẳng \(\left( \alpha \right)\) chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với mặt phẳng phẳng \(\left( \beta \right)\)thì \(\left( \alpha \right)\)và \(\left( \beta \right)\)song song với nhau.

Qua một điểm nằm ngoài một mặt phẳng cho trước có một và chỉ một mặt phẳng song song với mặt phẳng đã cho.
Cho hai mặt phẳng song song. Nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau.

3. Định lí Thalès trong không gian
Ba mặt phẳng đôi một song song chắn trên hai cát tuyến phân biệt bất kì những đoạn thẳng tương ứng tỉ lệ.

\(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AC}}{{A'C'}}\)
4. Hình lăng trụ và hình hộp
Cho hai mặt phẳng song song \(\left( \alpha \right)\) và \(\left( {\alpha '} \right)\). Trên \(\left( \alpha \right)\) cho đa thức đa giác lồi \({A_1}{A_2}...{A_n}\). Qua các đỉnh\({A_1},{A_2},...,{A_n}\)vẽ các đường thẳng đôi một song song và cắt mặt phẳng \(\left( {\alpha '} \right)\)tại \({A_1}',{A_2}',...,{A_n}'\). Hình gồm hai đa giác\({A_1}{A_2}...{A_n}\), \({A_1}'{A_2}'...{A_n}'\) và các tứ giác \({A_1}{A_1}'{A_2}'{A_2}\),\({A_2}{A_2}'{A_3}'{A_3}\),…,\({A_n}{A_n}'{A_1}'{A_1}\)được gọi là hình lăng trụ và kí hiệu là \({A_1}{A_2}...{A_n}.{A_1}'{A_2}'...{A_n}'\).
Các điểm \({A_1},{A_2},...,{A_n}\) và \({A_1}',{A_2}',...,{A_n}'\)được gọi là các đỉnh, các đoạn thẳng \({A_1}{A_1}',{A_2}{A_2}',...,{A_n}{A_n}'\)được gọi là các cạnh bên, các đoạn thẳng \({A_1}{A_2},{A_2}{A_3},...,{A_n}{A_1}\)và \({A_1}'{A_2}',{A_2}'{A_3}',...,{A_n}'{A_1}'\) gọi là cạnh đáy của hình trụ.
Hai đa giác \({A_1}{A_2}...{A_n}\)và \({A_1}'{A_2}'...{A_n}'\)được gọi là hai mặt đáy của hình lăng trụ.
Các tứ giác \({A_1}{A_1}'{A_2}'{A_2}\),\({A_2}{A_2}'{A_3}'{A_3}\),…,\({A_n}{A_n}'{A_1}'{A_1}\) gọi là các mặt bên của hình trụ.

Hình lăng trụ tứ giác ABCD.A’B’C’D’ có hai đáy là hình bình hành được gọi là hình hộp.

Chào mừng các em học sinh lớp 11 đến với bài học về Lý thuyết Hai mặt phẳng song song, một phần quan trọng trong chương trình Hình học không gian của SGK Toán 11 Kết Nối Tri Thức. Bài viết này sẽ cung cấp một cái nhìn toàn diện về chủ đề này, từ định nghĩa cơ bản đến các ứng dụng thực tế, giúp các em nắm vững kiến thức và tự tin giải quyết các bài tập liên quan.
Hai mặt phẳng được gọi là song song nếu chúng không có điểm chung. Điều này có nghĩa là, nếu ta kéo dài vô hạn hai mặt phẳng đó, chúng sẽ không bao giờ giao nhau. Để hiểu rõ hơn, hãy tưởng tượng hai tờ giấy đặt song song với nhau, chúng không chạm vào nhau ở bất kỳ điểm nào.
Có một số điều kiện để xác định hai mặt phẳng song song:
Khi hai mặt phẳng song song, một số tính chất quan trọng sau đây được áp dụng:
Lý thuyết hai mặt phẳng song song có nhiều ứng dụng trong thực tế, đặc biệt trong lĩnh vực kiến trúc, xây dựng và thiết kế. Ví dụ:
Để củng cố kiến thức, hãy cùng giải một số bài tập vận dụng:
Để học tốt lý thuyết này, các em nên:
Tusach.vn hy vọng bài viết này đã cung cấp cho các em những kiến thức hữu ích về Lý thuyết Hai mặt phẳng song song - SGK Toán 11 Kết Nối Tri Thức. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập