Chào mừng các em học sinh đến với lời giải chi tiết mục 1 trang 31, 32 sách giáo khoa Toán 11 tập 1 chương trình Kết nối tri thức. Bài viết này sẽ giúp các em hiểu rõ hơn về các khái niệm và phương pháp giải bài tập trong mục này.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp những tài liệu và lời giải chính xác, dễ hiểu nhất.
Cho hai phương trình \(2x - 4 = 0) và (left( {x - 2} right)left( {{x^2} + 1} right) = 0). Tìm và so sánh tập nghiệm của hai phương trình trên
Video hướng dẫn giải
Cho hai phương trình \(2x - 4 = 0\) và \(\left( {x - 2} \right)\left( {{x^2} + 1} \right) = 0\).
Tìm và so sánh tập nghiệm của hai phương trình trên
Phương pháp giải:
Giải phương trình và so sánh tập nghiệm của 2 phương trình
Lời giải chi tiết:
Ta có:
Tập nghiệm của phương trình là \({S_1} = \left\{ 2 \right\}\)
\(\left( {x - 2} \right)\left( {{x^2} + 1} \right) = 0\; \Leftrightarrow x - 2 = 0\; \Leftrightarrow x = 2\)
Tập nghiệm của phương trình là \({S_2} = \left\{ 2 \right\}\)
Vậy tập nghiệm của 2 phương trình là tương đương.
Video hướng dẫn giải
Xét sự tương đương của hai phương trình sau:
\(\frac{{x - 1}}{{x + 1}} = 0\) và \({x^2} - 1 = 0\)
Phương pháp giải:
Giải nghiệm của 2 phương trình và so sánh tập nghiệm.
Lưu ý điều kiện xác định của phương trình
Lời giải chi tiết:
Ta có: \(\frac{{x - 1}}{{x + 1}}\;\)xác định khi \(x + 1 \ne 0 \Leftrightarrow x \ne - 1\)
\(\frac{{x - 1}}{{x + 1}} = 0 \Leftrightarrow x - 1 = 0 \Leftrightarrow x = 1\;\)
Tập nghiệm của phương trình là \({S_1} = \left\{ 1 \right\}\)
\({x^2} - 1 = 0 \Leftrightarrow {x^2} = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - 1}\end{array}} \right.\;\)
Tập nghiệm của phương trình là \({S_2} = \left\{ {1; - 1} \right\}\)
Vậy tập nghiệm của 2 phương trình là không tương đương nhau
Mục 1 của chương trình Toán 11 tập 1 Kết nối tri thức tập trung vào việc giới thiệu về giới hạn của hàm số. Đây là một khái niệm nền tảng quan trọng, mở đầu cho chương trình Giải tích. Việc nắm vững kiến thức về giới hạn sẽ giúp các em hiểu sâu hơn về các khái niệm tiếp theo như đạo hàm, tích phân.
Bài này yêu cầu các em xét tính tồn tại giới hạn của hàm số tại một điểm cho trước. Để giải bài này, các em cần áp dụng định nghĩa giới hạn và kiểm tra xem điều kiện của định nghĩa có được thỏa mãn hay không.
Ví dụ, để xét giới hạn của hàm số f(x) = (x^2 - 1)/(x - 1) khi x tiến tới 1, ta có thể rút gọn hàm số thành f(x) = x + 1 (với x ≠ 1). Khi đó, giới hạn của f(x) khi x tiến tới 1 là 1 + 1 = 2.
Bài này thường yêu cầu các em tính giới hạn của hàm số bằng cách sử dụng các tính chất của giới hạn. Các em cần phân tích hàm số và áp dụng các tính chất phù hợp để đơn giản hóa biểu thức và tính giới hạn.
Bài này có thể yêu cầu các em chứng minh một giới hạn nào đó. Để giải bài này, các em cần sử dụng định nghĩa giới hạn hoặc các tính chất của giới hạn để chứng minh rằng giới hạn của hàm số tồn tại và bằng một giá trị cụ thể.
Hy vọng với những hướng dẫn chi tiết này, các em sẽ tự tin giải quyết các bài tập trong Mục 1 trang 31, 32 SGK Toán 11 tập 1 - Kết nối tri thức. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập