Bài 1.20 thuộc chương 1: Vectơ trong mặt phẳng của SGK Toán 11 tập 1 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, điều kiện vuông góc và ứng dụng trong hình học.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập hiệu quả.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \(\sin 2x + \cos 4x = 0\); b) \(\cos 3x = - \cos 7x\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng công thức hạ bậc để tính \(\cos 4x\) và công thức biến đổi tổng thành tích
Dựa vào công thức nghiệm tổng quát:
\(\sin x = m\; \Leftrightarrow \sin x = \sin \alpha \;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \alpha + k2\pi }\\{x = \pi - \alpha + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right)} \right.\)
\(\cos x = m\;\; \Leftrightarrow \cos x = \cos \alpha \;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \alpha + k2\pi }\\{x = - \alpha + k2\pi }\end{array}\;\left( {k \in \mathbb{Z}} \right)} \right.\)
Lời giải chi tiết
a) \(\sin 2x + 1 - 2{\sin ^2}2x = 0\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 2x = 1}\\{\sin 2x = - \frac{1}{2}}\end{array}\;\;\;} \right. \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{\sin 2x = \sin \frac{\pi }{2}}\\{\sin 2x = \sin - \frac{\pi }{6}}\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = \frac{\pi }{2} + k2\pi }\\{2x = - \frac{\pi }{6} + k2\pi }\\{2x = \pi + \frac{\pi }{6} + k2\pi }\end{array}} \right.\;\;\)
\( \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k\pi }\\{x = - \frac{\pi }{{12}} + k\pi }\\{x = \frac{{7\pi }}{{12}} + k\pi }\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)
b) \(\cos 3x = - \cos 7x\; \Leftrightarrow \cos 3x + \cos 7x = 0\;\; \Leftrightarrow 2\cos 5x\cos 2x = 0\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos 5x = 0}\\{\cos 2x = 0\;}\end{array}} \right.\;\;\)
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{5x = \frac{\pi }{2} + k\pi }\\{2x = \frac{\pi }{2} + k\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{{10}} + k\frac{\pi }{5}}\\{x = \frac{\pi }{4} + k\frac{\pi }{2}}\end{array}} \right.\] \(\left( {k \in \mathbb{Z}} \right)\)
Bài 1.20 trang 39 SGK Toán 11 tập 1 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về tích vô hướng của hai vectơ. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 1.20 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài 1.20, chúng ta cần nắm vững các công thức và tính chất sau:
Ví dụ minh họa:
Cho hai vectơ a = (1; 2) và b = (-3; 1). Tính tích vô hướng của a và b, xác định góc giữa hai vectơ, và kiểm tra xem hai vectơ có vuông góc hay không.
Để hiểu sâu hơn về tích vô hướng, bạn có thể thực hành thêm các bài tập sau:
Khi giải các bài tập về tích vô hướng, bạn cần chú ý:
Kết luận: Bài 1.20 trang 39 SGK Toán 11 tập 1 Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về tích vô hướng và ứng dụng của nó trong hình học. Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc các bạn học tốt!
| Công thức | Mô tả |
|---|---|
| a ⋅ b = |a| |b| cos(θ) | Tích vô hướng của hai vectơ |
| a ⋅ b = x₁x₂ + y₁y₂ | Tích vô hướng trong hệ tọa độ |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập