Chào mừng bạn đến với lời giải chi tiết mục 4 trang 36 SGK Toán 11 tập 1 - Kết nối tri thức trên tusach.vn. Chúng tôi hiểu rằng việc tự học đôi khi gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức.
Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và những lưu ý quan trọng để bạn có thể tự tin giải quyết các bài tập tương tự.
a) Quan sát Hình 1.24, hãy cho biết đường thẳng (y = 1) cắt đồ thị hàm số (y = tan x) tại mấy điểm trên khoảng (left( { - frac{pi }{2};frac{pi }{2}} right)?)
Video hướng dẫn giải
a) Quan sát Hình 1.24, hãy cho biết đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = \tan x\) tại mấy điểm trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)?\)

b) Dựa vào tính tuần hoàn của hàm tang, hãy viết công thức nghiệm của phương trình đã cho
Phương pháp giải:
Nghiệm của phương trình \(\tan x = 1\) là hoành độ các giao điểm của đường thẳng \(y = 1\) và đồ thị hàm số \(y = \tan x\)
Lời giải chi tiết:
a) Từ Hình 1.24, ta thấy đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = \tan x\;\)tại 1 điểm \(x = \frac{\pi }{4}\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\)
b) Ta có công thức nghiệm của phương trình là: \(x = \frac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
Video hướng dẫn giải
Giải các phương trình sau:
a) \(\sqrt 3 \tan 2x = - 1\); b) \(\tan 3x + \tan 5x = 0\)’
Phương pháp giải:
Dựa vào công thức nghiệm tổng quát: \(\tan x = m\; \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết:
a) \(\sqrt 3 \tan 2x = - 1\;\; \Leftrightarrow \tan 2x = - \frac{1}{{\sqrt 3 }}\;\;\; \Leftrightarrow \tan 2x = \tan - \frac{\pi }{6}\; \Leftrightarrow 2x = - \frac{\pi }{6} + k\pi \)
\(\;\; \Leftrightarrow x = - \frac{\pi }{{12}} + \frac{{k\pi }}{2}\;\left( {k \in \mathbb{Z}} \right)\)
b) \(\tan 3x + \tan 5x = 0\;\; \Leftrightarrow \tan 3x = \tan \left( { - 5x} \right) \Leftrightarrow 3x = - 5x + k\pi \;\; \Leftrightarrow 8x = k\pi \;\; \Leftrightarrow x = \frac{{k\pi }}{8}\;\left( {k \in \mathbb{Z}} \right)\)
Mục 4 trang 36 SGK Toán 11 tập 1 - Kết nối tri thức tập trung vào việc ứng dụng các kiến thức về hàm số bậc hai đã học để giải quyết các bài toán thực tế. Nội dung chính bao gồm việc xác định các yếu tố của hàm số, vẽ đồ thị hàm số và tìm các điểm đặc biệt của đồ thị như đỉnh, trục đối xứng, giao điểm với các trục tọa độ.
Mục 4 thường bao gồm các bài tập sau:
Để xác định hệ số a, b, c của hàm số bậc hai y = ax2 + bx + c, bạn cần đưa hàm số về dạng tổng quát. Ví dụ, nếu hàm số cho là y = 2x2 - 5x + 1, thì a = 2, b = -5, c = 1.
Tọa độ đỉnh của parabol y = ax2 + bx + c được tính theo công thức:
Ví dụ, với hàm số y = x2 - 4x + 3, ta có:
Vậy tọa độ đỉnh của parabol là (2, -1).
Để vẽ đồ thị hàm số bậc hai, bạn cần thực hiện các bước sau:
Tusach.vn cam kết cung cấp lời giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập trong SGK Toán 11 tập 1 - Kết nối tri thức. Chúng tôi luôn cập nhật nội dung mới nhất và cung cấp nhiều tài liệu học tập hữu ích khác để giúp bạn học tập hiệu quả hơn. Hãy truy cập tusach.vn ngay hôm nay để khám phá!
| Bài tập | Lời giải |
|---|---|
| Bài 1 | Xem lời giải |
| Bài 2 | Xem lời giải |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập