Bài 5.26 thuộc chương trình Toán 11 Tập 1, sách Kết Nối Tri Thức, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng.
Bài tập này yêu cầu học sinh nắm vững các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Tìm giới hạn của các dãy số sau: a) ({u_n} = frac{{{n^2}}}{{3{n^2} + 7n - 2}}); b) ({v_n} = mathop sum limits_{k = 0}^n frac{{{3^k} + {5^k}}}{{{6^k}}}); c) ({w_n} = frac{{sin n}}{{4n}})
Đề bài
Tìm giới hạn của các dãy số sau:
a) \({u_n} = \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\);
b) \({v_n} = \mathop \sum \limits_{k = 0}^n \frac{{{3^k} + {5^k}}}{{{6^k}}}\);
c) \({w_n} = \frac{{\sin n}}{{4n}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử và mẫu cho lũy thừa cao nhất của n, rồi áp dụng quy tắc tính giới hạn
Lời giải chi tiết
a) \(\lim {u_n} = \lim \frac{{{n^2}}}{{3{n^2} + 7n - 2}} = \lim \left( {\frac{1}{{3 + \frac{7}{n} - \frac{2}{{{n^2}}}}}} \right) = \frac{1}{3}\)
b,
\(\begin{array}{l}{v_n} = \mathop \sum \limits_{k = 0}^n \frac{{{3^k} + {5^k}}}{{{6^k}}} = \frac{{{3^0} + {5^0}}}{{{6^0}}} + \frac{{{3^1} + {5^1}}}{{{6^1}}} + ... + \frac{{{3^n} + {5^n}}}{{{6^n}}}\\ = \frac{{{3^0}}}{{{6^0}}} + \frac{{{5^0}}}{{{6^0}}} + \frac{{{3^1}}}{{{6^1}}} + \frac{{{5^1}}}{{{6^1}}} + ... + \frac{{{3^n}}}{{{6^n}}} + \frac{{{5^n}}}{{{6^n}}}\\ = \left[ {\left( {\frac{{{3^0}}}{{{6^0}}} + \frac{{{3^1}}}{{{6^1}}} + ... + \frac{{{3^n}}}{{{6^n}}}} \right)} \right] + \left[ {\left( {\frac{{{5^0}}}{{{6^0}}} + \frac{{{5^1}}}{{{6^1}}} + ... + \frac{{{5^n}}}{{{6^n}}}} \right)} \right]\end{array}\)
Vì \(\frac{{{3^0}}}{{{6^0}}};\frac{{{3^1}}}{{{6^1}}};...;\frac{{{3^n}}}{{{6^n}}}\) là cấp số nhân có \(\left( {n + 1} \right)\) số hạng với \({u_1} = \frac{{{3^0}}}{{{6^0}}} = 1,\,q = \frac{3}{6} = \frac{1}{2}\). Do đó:
\(\frac{{{3^0}}}{{{6^0}}} + \frac{{{3^1}}}{{{6^1}}} + ... + \frac{{{3^n}}}{{{6^n}}} = 1.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^{n + 1}}}}{{1 - \frac{1}{2}}} = 2 - 2.{\left( {\frac{1}{2}} \right)^{n + 1}} = 2 - {\left( {\frac{1}{2}} \right)^n}\)
Vì \(\frac{{{5^0}}}{{{6^0}}};\frac{{{5^1}}}{{{6^1}}};...;\frac{{{5^n}}}{{{6^n}}}\) là cấp số nhân có \(\left( {n + 1} \right)\) số hạng với \({u_1} = \frac{{{5^0}}}{{{6^0}}} = 1,\,q = \frac{5}{6}\). Do đó:
\(\frac{{{5^0}}}{{{6^0}}} + \frac{{{5^1}}}{{{6^1}}} + ... + \frac{{{5^n}}}{{{6^n}}} = 1.\frac{{1 - {{\left( {\frac{5}{6}} \right)}^{n + 1}}}}{{1 - \frac{5}{6}}} = 6 - 6.{\left( {\frac{5}{6}} \right)^{n + 1}} = 6 - 5.{\left( {\frac{5}{6}} \right)^n}\)
Vậy \({v_n} = 2 - {\left( {\frac{1}{2}} \right)^n} + 6 - 5.{\left( {\frac{5}{6}} \right)^n} = 8 - {\left( {\frac{1}{2}} \right)^n} - 5.{\left( {\frac{5}{6}} \right)^n}\)
Do đó, \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = \mathop {\lim }\limits_{n \to + \infty } \left[ {8 - {{\left( {\frac{1}{2}} \right)}^n} - 5.{{\left( {\frac{5}{6}} \right)}^n}} \right] = 8\).
c, Ta có:
\(0 \le \left| {\sin n} \right| \le 1 \Leftrightarrow 0 \le \left| {\frac{{\sin n}}{{4n}}} \right| \le \frac{1}{{4n}}\)
Mà \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{4n}} = 0\) nên theo nguyên lý kẹp \(\mathop {\lim }\limits_{n \to + \infty } \left| {\frac{{\sin n}}{{4n}}} \right| = 0\)
Bài 5.26 trang 124 SGK Toán 11 Tập 1 Kết Nối Tri Thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
(Giả sử nội dung bài tập là: Một vật chuyển động theo phương trình s(t) = t3 - 6t2 + 9t + 2, trong đó s(t) là quãng đường đi được (mét) sau thời gian t (giây). Hãy tìm vận tốc và gia tốc của vật tại thời điểm t = 2 giây.)
Vận tốc là đạo hàm của quãng đường theo thời gian: v(t) = s'(t)
s(t) = t3 - 6t2 + 9t + 2
v(t) = 3t2 - 12t + 9
Gia tốc là đạo hàm của vận tốc theo thời gian: a(t) = v'(t)
v(t) = 3t2 - 12t + 9
a(t) = 6t - 12
v(2) = 3(2)2 - 12(2) + 9 = 12 - 24 + 9 = -3 (m/s)
a(2) = 6(2) - 12 = 12 - 12 = 0 (m/s2)
Tại thời điểm t = 2 giây, vận tốc của vật là -3 m/s và gia tốc của vật là 0 m/s2.
Để luyện tập thêm, bạn có thể giải các bài tập tương tự trong SGK Toán 11 Tập 1 Kết Nối Tri Thức, tập trung vào việc tính đạo hàm và ứng dụng của đạo hàm trong các bài toán thực tế.
tusach.vn hy vọng với lời giải chi tiết này, các bạn học sinh sẽ hiểu rõ hơn về Bài 5.26 trang 124 SGK Toán 11 Tập 1 Kết Nối Tri Thức và có thể tự tin giải các bài tập tương tự. Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập