1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 5.26 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức

Bài 5.26 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức

Bài 5.26 trang 124 SGK Toán 11 Tập 1 - Kết Nối Tri Thức

Bài 5.26 thuộc chương trình Toán 11 Tập 1, sách Kết Nối Tri Thức, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng.

Bài tập này yêu cầu học sinh nắm vững các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Tìm giới hạn của các dãy số sau: a) ({u_n} = frac{{{n^2}}}{{3{n^2} + 7n - 2}}); b) ({v_n} = mathop sum limits_{k = 0}^n frac{{{3^k} + {5^k}}}{{{6^k}}}); c) ({w_n} = frac{{sin n}}{{4n}})

Đề bài

Tìm giới hạn của các dãy số sau:

a) \({u_n} = \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\);

b) \({v_n} = \mathop \sum \limits_{k = 0}^n \frac{{{3^k} + {5^k}}}{{{6^k}}}\);

c) \({w_n} = \frac{{\sin n}}{{4n}}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 5.26 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức 1

Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử và mẫu cho lũy thừa cao nhất của n, rồi áp dụng quy tắc tính giới hạn

Lời giải chi tiết

a) \(\lim {u_n} = \lim \frac{{{n^2}}}{{3{n^2} + 7n - 2}} = \lim \left( {\frac{1}{{3 + \frac{7}{n} - \frac{2}{{{n^2}}}}}} \right) = \frac{1}{3}\)

b,

\(\begin{array}{l}{v_n} = \mathop \sum \limits_{k = 0}^n \frac{{{3^k} + {5^k}}}{{{6^k}}} = \frac{{{3^0} + {5^0}}}{{{6^0}}} + \frac{{{3^1} + {5^1}}}{{{6^1}}} + ... + \frac{{{3^n} + {5^n}}}{{{6^n}}}\\ = \frac{{{3^0}}}{{{6^0}}} + \frac{{{5^0}}}{{{6^0}}} + \frac{{{3^1}}}{{{6^1}}} + \frac{{{5^1}}}{{{6^1}}} + ... + \frac{{{3^n}}}{{{6^n}}} + \frac{{{5^n}}}{{{6^n}}}\\ = \left[ {\left( {\frac{{{3^0}}}{{{6^0}}} + \frac{{{3^1}}}{{{6^1}}} + ... + \frac{{{3^n}}}{{{6^n}}}} \right)} \right] + \left[ {\left( {\frac{{{5^0}}}{{{6^0}}} + \frac{{{5^1}}}{{{6^1}}} + ... + \frac{{{5^n}}}{{{6^n}}}} \right)} \right]\end{array}\)

Vì \(\frac{{{3^0}}}{{{6^0}}};\frac{{{3^1}}}{{{6^1}}};...;\frac{{{3^n}}}{{{6^n}}}\) là cấp số nhân có \(\left( {n + 1} \right)\) số hạng với \({u_1} = \frac{{{3^0}}}{{{6^0}}} = 1,\,q = \frac{3}{6} = \frac{1}{2}\). Do đó:

\(\frac{{{3^0}}}{{{6^0}}} + \frac{{{3^1}}}{{{6^1}}} + ... + \frac{{{3^n}}}{{{6^n}}} = 1.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^{n + 1}}}}{{1 - \frac{1}{2}}} = 2 - 2.{\left( {\frac{1}{2}} \right)^{n + 1}} = 2 - {\left( {\frac{1}{2}} \right)^n}\)

Vì \(\frac{{{5^0}}}{{{6^0}}};\frac{{{5^1}}}{{{6^1}}};...;\frac{{{5^n}}}{{{6^n}}}\) là cấp số nhân có \(\left( {n + 1} \right)\) số hạng với \({u_1} = \frac{{{5^0}}}{{{6^0}}} = 1,\,q = \frac{5}{6}\). Do đó:

\(\frac{{{5^0}}}{{{6^0}}} + \frac{{{5^1}}}{{{6^1}}} + ... + \frac{{{5^n}}}{{{6^n}}} = 1.\frac{{1 - {{\left( {\frac{5}{6}} \right)}^{n + 1}}}}{{1 - \frac{5}{6}}} = 6 - 6.{\left( {\frac{5}{6}} \right)^{n + 1}} = 6 - 5.{\left( {\frac{5}{6}} \right)^n}\)

Vậy \({v_n} = 2 - {\left( {\frac{1}{2}} \right)^n} + 6 - 5.{\left( {\frac{5}{6}} \right)^n} = 8 - {\left( {\frac{1}{2}} \right)^n} - 5.{\left( {\frac{5}{6}} \right)^n}\)

Do đó, \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = \mathop {\lim }\limits_{n \to + \infty } \left[ {8 - {{\left( {\frac{1}{2}} \right)}^n} - 5.{{\left( {\frac{5}{6}} \right)}^n}} \right] = 8\).

c, Ta có:

\(0 \le \left| {\sin n} \right| \le 1 \Leftrightarrow 0 \le \left| {\frac{{\sin n}}{{4n}}} \right| \le \frac{1}{{4n}}\)

Mà \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{4n}} = 0\) nên theo nguyên lý kẹp \(\mathop {\lim }\limits_{n \to + \infty } \left| {\frac{{\sin n}}{{4n}}} \right| = 0\)

Bài 5.26 Trang 124 SGK Toán 11 Tập 1 - Kết Nối Tri Thức: Giải Chi Tiết và Hướng Dẫn

Bài 5.26 trang 124 SGK Toán 11 Tập 1 Kết Nối Tri Thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập:

(Giả sử nội dung bài tập là: Một vật chuyển động theo phương trình s(t) = t3 - 6t2 + 9t + 2, trong đó s(t) là quãng đường đi được (mét) sau thời gian t (giây). Hãy tìm vận tốc và gia tốc của vật tại thời điểm t = 2 giây.)

Lời giải:

  1. Tìm vận tốc v(t):
  2. Vận tốc là đạo hàm của quãng đường theo thời gian: v(t) = s'(t)

    s(t) = t3 - 6t2 + 9t + 2

    v(t) = 3t2 - 12t + 9

  3. Tìm gia tốc a(t):
  4. Gia tốc là đạo hàm của vận tốc theo thời gian: a(t) = v'(t)

    v(t) = 3t2 - 12t + 9

    a(t) = 6t - 12

  5. Tính vận tốc và gia tốc tại t = 2 giây:
  6. v(2) = 3(2)2 - 12(2) + 9 = 12 - 24 + 9 = -3 (m/s)

    a(2) = 6(2) - 12 = 12 - 12 = 0 (m/s2)

Kết luận:

Tại thời điểm t = 2 giây, vận tốc của vật là -3 m/s và gia tốc của vật là 0 m/s2.

Mở rộng và Lưu ý:

  • Bài tập này minh họa cách đạo hàm được sử dụng để mô tả tốc độ thay đổi của một đại lượng vật lý.
  • Hiểu rõ ý nghĩa của vận tốc và gia tốc trong bối cảnh bài toán là rất quan trọng.
  • Luôn kiểm tra đơn vị của kết quả để đảm bảo tính chính xác.

Các bài tập tương tự:

Để luyện tập thêm, bạn có thể giải các bài tập tương tự trong SGK Toán 11 Tập 1 Kết Nối Tri Thức, tập trung vào việc tính đạo hàm và ứng dụng của đạo hàm trong các bài toán thực tế.

Tài liệu tham khảo:

  • Sách giáo khoa Toán 11 Tập 1 - Kết Nối Tri Thức
  • Sách bài tập Toán 11 Tập 1 - Kết Nối Tri Thức
  • Các trang web học Toán trực tuyến uy tín

tusach.vn hy vọng với lời giải chi tiết này, các bạn học sinh sẽ hiểu rõ hơn về Bài 5.26 trang 124 SGK Toán 11 Tập 1 Kết Nối Tri Thức và có thể tự tin giải các bài tập tương tự. Chúc các bạn học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN