Bài 1.9 thuộc chương 1: Hàm số và đồ thị của SGK Toán 11 tập 1 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về điều kiện xác định của hàm số để tìm tập xác định của hàm số cho trước.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu cùng với các lưu ý quan trọng giúp học sinh nắm vững kiến thức và tự tin giải bài tập.
Tính (sin 2a,cos 2a,tan 2a,;)biết: a) (sin a = frac{1}{3}) và (frac{pi }{2} < a < pi );
Đề bài
Tính \(\sin 2a,\cos 2a,\tan 2a,\;\)biết:
a) \(\sin a = \frac{1}{3}\) và \(\frac{\pi }{2} < a < \pi \);
b) \(\sin a + \cos a = \frac{1}{2}\) và \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\).
Phương pháp giải - Xem chi tiết
- Từ hệ thức lượng giác cơ bản là mối liên hệ giữa hai giá trị lượng giác, khi biết một giá trị lượng giác ta sẽ suy ra được giá trị còn lại. Cần lưu ý tời dấu của giá trị lượng giác để chọn cho phù hợp
- Sử dụng các hằng đẳng thức đáng nhớ.
Lời giải chi tiết
a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\)
Ta có: \({\sin ^2}a + {\cos ^2}a = 1\)
\(\Leftrightarrow \frac{1}{9} + {\cos ^2}a = 1\)
\(\Leftrightarrow {\cos ^2}a = 1 - \frac{1}{9}= \frac{8}{9}\)
\(\Leftrightarrow \cos a =\pm\sqrt { \frac{8}{9}} = \pm \frac{{2\sqrt 2 }}{3}\)
Vì \(\cos a < 0\) nên \(cos a =-\frac{{2\sqrt 2 }}{3}\)
Suy ra \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} = - \frac{{\sqrt 2 }}{4}\)
Ta có: \(\sin 2a = 2\sin a\cos a = 2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) = - \frac{{4\sqrt 2 }}{9}\)
\(\cos 2a = 1 - 2{\sin ^2}a = 1 - \frac{2}{9} = \frac{7}{9}\)
\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.\left( { - \frac{{\sqrt 2 }}{4}} \right)}}{{1 - {{\left( { - \frac{{\sqrt 2 }}{4}} \right)}^2}}} = - \frac{{4\sqrt 2 }}{7}\)
b) Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\sin a > 0,\cos a < 0\)
\({\left( {\sin a + \cos a} \right)^2} = {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = 1 + 2\sin a\cos a = \frac{1}{4}\)
Suy ra \(\sin 2a = 2\sin a\cos a = \frac{1}{4} - 1 = - \frac{3}{4}\)
Ta có: \({\sin ^2}a + {\cos ^2}a = 1\;\)
\( \Leftrightarrow \left( {\frac{1}{2} - {\cos }a} \right)^2 + {\cos ^2}a - 1 = 0\)
\( \Leftrightarrow \frac{1}{4} - \cos a + {\cos ^2}a + {\cos ^2}a - 1 = 0\)
\( \Leftrightarrow 2{\cos ^2}a - \cos a - \frac{3}{4} = 0\)
\( \Rightarrow \cos a = \frac{{1 - \sqrt 7 }}{4}\) (Vì \(\cos a < 0)\)
\(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{{1 - \sqrt 7 }}{4}} \right)^2} - 1 = - \frac{{\sqrt 7 }}{4}\)
\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{{3\sqrt 7 }}{7}\)
Bài 1.9 SGK Toán 11 tập 1 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về tập xác định của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Tìm tập xác định của các hàm số sau:
Để tìm tập xác định của hàm số, ta cần xác định các giá trị của x sao cho hàm số có nghĩa. Điều này có nghĩa là:
Hàm số f(x) xác định khi và chỉ khi 2x - 1 ≥ 0. Giải bất phương trình này, ta được:
2x ≥ 1
x ≥ 1/2
Vậy tập xác định của f(x) là D = [1/2; +∞).
Hàm số g(x) xác định khi và chỉ khi x - 3 ≠ 0. Giải phương trình này, ta được:
x ≠ 3
Vậy tập xác định của g(x) là D = R \ {3}.
Hàm số h(x) xác định khi và chỉ khi x + 2 > 0 (vì mẫu số là căn thức và phải khác 0). Giải bất phương trình này, ta được:
x > -2
Vậy tập xác định của h(x) là D = (-2; +∞).
Hàm số k(x) xác định khi và chỉ khi x² - 4 ≥ 0. Giải bất phương trình này, ta được:
x² ≥ 4
|x| ≥ 2
Điều này tương đương với x ≤ -2 hoặc x ≥ 2.
Vậy tập xác định của k(x) là D = (-∞; -2] ∪ [2; +∞).
Để luyện tập thêm, các em có thể giải các bài tập sau:
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về cách tìm tập xác định của hàm số và tự tin giải các bài tập tương tự. Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập