Bài 6.21 thuộc chương trình Toán 11 Tập 2, sách Kết Nối Tri Thức, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán cụ thể.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \(\log \left( {x + 1} \right) = 2;\)
b) \(2{\log _4}x + {\log _2}\left( {x - 3} \right) = 2;\)
c) \(\ln x + \ln \left( {x - 1} \right) = \ln 4x;\)
d) \({\log _3}\left( {{x^2} - 3x + 2} \right) = {\log _3}\left( {2x - 4} \right).\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Tìm điều kiện cho phương trình.
- Giải phương trình bằng định nghĩa hàm số lôgarit hoặc đưa 2 vế về cùng cơ số kết hợp biến đổi sử dụng công thức lôgarit.
Lời giải chi tiết
a) \(\log \left( {x + 1} \right) = 2\) (ĐK: x > - 1)
\( \Leftrightarrow x + 1 = {10^2} \Leftrightarrow x = 99\)
Vậy phương trình có nghiệm x = 99.
b) \(2{\log _4}x + {\log _2}\left( {x - 3} \right) = 2\) (ĐK: x > 3)
\(\begin{array}{l} \Leftrightarrow 2{\log _{{2^2}}}x + {\log _2}\left( {x - 3} \right) = 2\\ \Leftrightarrow {\log _2}x + {\log _2}\left( {x - 3} \right) = 2\\ \Leftrightarrow {\log _2}\left[ {x\left( {x - 3} \right)} \right] = 2\\ \Leftrightarrow x\left( {x - 3} \right) = {2^2}\\ \Leftrightarrow {x^2} - 3x - 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = - 1\left( {KTM} \right)\\x = 4\left( {TM} \right)\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm x = 4.
c) \(\ln x + \ln \left( {x - 1} \right) = \ln 4x;\) (ĐK: x > 1)
\(\begin{array}{l} \Leftrightarrow \ln \left[ {x\left( {x - 1} \right)} \right] = \ln 4x\\ \Leftrightarrow x\left( {x - 1} \right) = 4x\\ \Leftrightarrow {x^2} - x - 4x = 0\\ \Leftrightarrow {x^2} - 5x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = 5\left( {TM} \right)\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm x = 5.
d) \({\log _3}\left( {{x^2} - 3x + 2} \right) = {\log _3}\left( {2x - 4} \right).\) (ĐK: x > 2)
\(\begin{array}{l} \Leftrightarrow {x^2} - 3x + 2 = 2x - 4\\ \Leftrightarrow {x^2} - 5x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\left( {KTM} \right)\\x = 3\left( {TM} \right)\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm x = 3.
Bài 6.21 trang 24 SGK Toán 11 Tập 2 Kết Nối Tri Thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này, được trình bày một cách dễ hiểu và logic.
Bài 6.21 yêu cầu học sinh thực hiện các thao tác sau (nội dung bài tập cụ thể sẽ được chèn vào đây, ví dụ: Tìm đạo hàm của hàm số, khảo sát hàm số, tìm cực trị,...). Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
(Lời giải chi tiết của bài tập sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng và sử dụng các ký hiệu toán học chính xác. Ví dụ:)
Để giúp học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ xem xét một ví dụ minh họa:
(Ví dụ minh họa sẽ được trình bày ở đây, bao gồm đề bài, lời giải chi tiết và giải thích rõ ràng.)
Để củng cố kiến thức, học sinh có thể tự giải các bài tập tương tự sau:
Bài 6.21 trang 24 SGK Toán 11 Tập 2 Kết Nối Tri Thức là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng giải bài toán về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập này, học sinh sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự.
Nguồn tham khảo:
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập