Bài 2.4 thuộc chương trình Toán 11 tập 1, sách Kết nối tri thức, tập trung vào việc ôn tập và củng cố kiến thức về vectơ. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán liên quan đến phép cộng, trừ vectơ, tích của một số với vectơ và các ứng dụng của vectơ trong hình học.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Trong các dãy số (left( {{u_n}} right)) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn? a) ({u_n} = n - 1); b) ({u_n} = frac{{n + 1}}{{n + 2}}); c) ({u_n} = sin;n;); d) ({u_n} = {left( { - 1} right)^{n - 1}}{n^2})
Đề bài
Trong các dãy số \(\left( {{u_n}} \right)\) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) \({u_n} = n - 1\);
b) \({u_n} = \frac{{n + 1}}{{n + 2}}\);
c) \({u_n} = sin\;n\;\);
d) \({u_n} = {\left( { - 1} \right)^{n - 1}}{n^2}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số M sao cho \({u_n} \le M,\;n \in {N^*}\)
- Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu tồn tại một số M sao cho \({u_n} \ge m,\;n \in {N^*}\)
- Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho \(m \le {u_n} \le M,\;n \in {N^*}\)
Lời giải chi tiết
a) Ta có: \(n \ge 1\; \Rightarrow n - 1 \ge 0\; \Rightarrow {u_n} \ge 0,\;\forall \;n \in {N^*}\;\)
Do đó, \(\left( {{u_n}} \right)\) bị chặn dưới bởi 0.
\(\left( {{u_n}} \right)\) không bị chặn trên vì không tồn tại số M nào để \(n - 1 < M,\;\forall \;n \in {N^*}\).
b) Ta có:
\(\begin{array}{l}\forall n \in {N^*},{u_n} = \frac{{n + 1}}{{n + 2}} > 0.\\{u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}} < 1,\forall n \in {N^*}\\ \Rightarrow 0 < {u_n} < 1\end{array}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn.
c) Ta có:
\(\begin{array}{l} - 1 \le \sin n \le 1\\ \Rightarrow - 1 \le {u_n} \le 1,\forall n \in {N^*}\end{array}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn.
d) Ta có:
Nếu n chẵn, \({u_n} = - {n^2} < 0\), \(\forall n \in {N^*}\).
Nếu n lẻ, \({u_n} = {n^2} > 0\), \(\forall n \in {N^*}\).
Vậy \(\left( {{u_n}} \right)\) không bị chặn.
Bài 2.4 trang 46 SGK Toán 11 tập 1 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng các kiến thức về vectơ đã học trong chương. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 2.4 yêu cầu học sinh thực hiện các thao tác sau:
Để giải bài 2.4, chúng ta cần nắm vững các kiến thức sau:
Ví dụ minh họa:
Giả sử cho hai vectơ a và b. Để tìm vectơ a + b, ta sử dụng quy tắc hình bình hành. Vẽ hình bình hành ABCD sao cho AB = a và AD = b. Khi đó, vectơ AC chính là vectơ a + b.
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Bài 2.4 trang 46 SGK Toán 11 tập 1 Kết nối tri thức là một bài tập quan trọng giúp học sinh nắm vững kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn Toán.
Nếu bạn có bất kỳ thắc mắc nào, đừng ngần ngại đặt câu hỏi tại tusach.vn. Chúng tôi luôn sẵn sàng hỗ trợ bạn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập