1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 9.13 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 9.13 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 9.13 trang 96 SGK Toán 11 Tập 2 - Kết Nối Tri Thức

Bài 9.13 thuộc chương trình Toán 11 Tập 2, sách Kết Nối Tri Thức, tập trung vào việc rèn luyện kỹ năng giải quyết các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho hàm số (fleft( x right) = {x^2}{e^x}.) Tính (f''left( 0 right).)

Đề bài

Cho hàm số \(f\left( x \right) = {x^2}{e^x}.\) Tính \(f''\left( 0 \right).\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 9.13 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức 1

Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm tại mỗi điểm \(x \in \left( {a;b} \right).\) Nếu hàm số \(y' = f'\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y'\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x, kí hiệu là \(y''\) hoặc \(f''\left( x \right).\)

Lời giải chi tiết

Ta có \(f'\left( x \right) = 2x{e^x} + {x^2}{e^x} \Rightarrow f''\left( x \right) = 2\left( {{e^x} + x{e^x}} \right) + 2x{e^x} + {x^2}{e^x} = 2{e^x} + 4x{e^x} + {x^2}{e^x}\)

Vậy \(f''\left( 0 \right) = 2.\)

Bài 9.13 Trang 96 SGK Toán 11 Tập 2 - Kết Nối Tri Thức: Giải Chi Tiết và Hướng Dẫn

Bài 9.13 trang 96 SGK Toán 11 Tập 2 Kết Nối Tri Thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc tìm cực trị của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập:

Bài tập yêu cầu tìm cực trị của hàm số. Để giải bài tập này, chúng ta cần thực hiện các bước sau:

  1. Tính đạo hàm cấp một (f'(x)) của hàm số.
  2. Tìm các điểm dừng bằng cách giải phương trình f'(x) = 0.
  3. Lập bảng xét dấu f'(x) để xác định khoảng đồng biến, nghịch biến của hàm số.
  4. Kết luận về cực đại, cực tiểu dựa vào bảng xét dấu.

Lời giải chi tiết:

Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2 (ví dụ minh họa). Chúng ta sẽ áp dụng các bước trên để tìm cực trị của hàm số này.

  1. Tính đạo hàm cấp một: f'(x) = 3x2 - 6x
  2. Tìm điểm dừng: 3x2 - 6x = 0 => 3x(x - 2) = 0 => x = 0 hoặc x = 2
  3. Lập bảng xét dấu f'(x):
    x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  4. Kết luận:
    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý quan trọng:

Khi giải bài tập về cực trị, cần chú ý đến tập xác định của hàm số. Nếu hàm số không xác định tại một điểm nào đó, điểm đó không thể là điểm cực trị.

Bài tập tương tự:

Để rèn luyện thêm kỹ năng giải bài tập về cực trị, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 11 Tập 2 Kết Nối Tri Thức hoặc trên các trang web học tập trực tuyến.

Tusach.vn – Hỗ trợ học tập hiệu quả:

Tusach.vn luôn đồng hành cùng bạn trong quá trình học tập. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong SGK Toán 11 Tập 2 Kết Nối Tri Thức. Hãy truy cập tusach.vn để được hỗ trợ tốt nhất!

Các từ khóa liên quan:

  • Đạo hàm
  • Cực trị
  • Khảo sát hàm số
  • Toán 11
  • Kết Nối Tri Thức
  • Bài 9.13
  • SGK Toán 11 Tập 2

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN