1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 5.3 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức

Bài 5.3 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức

Bài 5.3 trang 109 SGK Toán 11 Tập 1 - Kết nối tri thức

Bài 5.3 thuộc chương trình Toán 11 Tập 1 - Kết nối tri thức, tập trung vào việc luyện tập về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để tính đạo hàm của các hàm số phức tạp hơn.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.

Tìm giới hạn của các dãy số cho bởi a) ({u_n} = frac{{{n^2} + 1}}{{2n - 1}}) b) ({v_n} = sqrt {2{n^2} + 1} - n)

Đề bài

Tìm giới hạn của các dãy số cho bởi

a) \({u_n} = \frac{{{n^2} + 1}}{{2n - 1}}\)

b) \({v_n} = \sqrt {2{n^2} + 1} - n\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 5.3 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức 1

a, Chia cả tử và mẫu cho \({x^n}\), với n là bạc cao nhất.

b, Nhân với biểu thức liên hợp \(\left( {\sqrt A - B} \right).\left( {\sqrt A + B} \right) = A - {B^2}\).

Lời giải chi tiết

a) \(\mathop {lim}\limits_{n \to + \infty } {u_n}\; = \mathop {lim}\limits_{n \to + \infty } \frac{{{n^2} + 1}}{{2n - 1}}\; = \mathop {lim}\limits_{n \to + \infty } \frac{{1 + \frac{1}{{{n^2}}}}}{{\frac{2}{n} - \frac{1}{{{n^2}}}}}\)

Ta có: \(\mathop {lim}\limits_{n \to + \infty } \left( {1 + \frac{1}{{{n^2}}}} \right)\; = 1,\;\mathop {lim}\limits_{n \to + \infty } \left( {\frac{2}{n} - \frac{1}{{{n^2}}}} \right)\; = 0\)

Suy ra \({u_n}\; = + \infty \)

b) \({v_n}\; = \sqrt {2{n^2} + 1} - n\; = \frac{{2{n^2} + 1 - {n^2}}}{{\sqrt {2{n^2} + 1} + n }}\; = \frac{{{n^2} + 1}}{{{n^2}\left( {\sqrt {\frac{2}{{{n^2}}} + \frac{1}{{{n^4}}} }+ \frac{1}{n} } \right)}} = \frac{{1 + \frac{1}{{{n^2}}}}}{{\sqrt {\frac{2}{{{n^2}}} + \frac{1}{{{n^4}}} }+ \frac{1}{n} }}\;\; = + \infty \)

Bài 5.3 trang 109 SGK Toán 11 Tập 1 - Kết nối tri thức: Giải chi tiết và hướng dẫn

Bài 5.3 trang 109 SGK Toán 11 Tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 5.3 yêu cầu tính đạo hàm của các hàm số sau:

  • a) y = x3 - 3x2 + 2x - 5
  • b) y = (x2 + 1)(x - 2)
  • c) y = (x + 1) / (x - 1)
  • d) y = sin(2x)

Lời giải chi tiết

a) y = x3 - 3x2 + 2x - 5

Áp dụng công thức đạo hàm của tổng và hiệu, ta có:

y' = 3x2 - 6x + 2

b) y = (x2 + 1)(x - 2)

Áp dụng công thức đạo hàm của tích, ta có:

y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

c) y = (x + 1) / (x - 1)

Áp dụng công thức đạo hàm của thương, ta có:

y' = [(1)(x - 1) - (x + 1)(1)] / (x - 1)2 = (x - 1 - x - 1) / (x - 1)2 = -2 / (x - 1)2

d) y = sin(2x)

Áp dụng công thức đạo hàm của hàm hợp, ta có:

y' = cos(2x) * 2 = 2cos(2x)

Lưu ý quan trọng

  • Nắm vững các công thức đạo hàm cơ bản: đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  • Chú ý đến thứ tự thực hiện các phép toán khi tính đạo hàm.
  • Kiểm tra lại kết quả sau khi tính toán để đảm bảo tính chính xác.

Bài tập tương tự

Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo các bài tập sau:

  1. Tính đạo hàm của hàm số y = x4 - 5x2 + 3x + 1
  2. Tính đạo hàm của hàm số y = (x2 - 1)(x + 3)
  3. Tính đạo hàm của hàm số y = (2x - 1) / (x + 2)
  4. Tính đạo hàm của hàm số y = cos(3x)

Kết luận

Bài 5.3 trang 109 SGK Toán 11 Tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Việc nắm vững các công thức đạo hàm cơ bản và rèn luyện kỹ năng giải bài tập thường xuyên sẽ giúp học sinh đạt kết quả tốt trong môn Toán.

Chúc các bạn học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN