Bài 5.3 thuộc chương trình Toán 11 Tập 1 - Kết nối tri thức, tập trung vào việc luyện tập về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để tính đạo hàm của các hàm số phức tạp hơn.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Tìm giới hạn của các dãy số cho bởi a) ({u_n} = frac{{{n^2} + 1}}{{2n - 1}}) b) ({v_n} = sqrt {2{n^2} + 1} - n)
Đề bài
Tìm giới hạn của các dãy số cho bởi
a) \({u_n} = \frac{{{n^2} + 1}}{{2n - 1}}\)
b) \({v_n} = \sqrt {2{n^2} + 1} - n\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a, Chia cả tử và mẫu cho \({x^n}\), với n là bạc cao nhất.
b, Nhân với biểu thức liên hợp \(\left( {\sqrt A - B} \right).\left( {\sqrt A + B} \right) = A - {B^2}\).
Lời giải chi tiết
a) \(\mathop {lim}\limits_{n \to + \infty } {u_n}\; = \mathop {lim}\limits_{n \to + \infty } \frac{{{n^2} + 1}}{{2n - 1}}\; = \mathop {lim}\limits_{n \to + \infty } \frac{{1 + \frac{1}{{{n^2}}}}}{{\frac{2}{n} - \frac{1}{{{n^2}}}}}\)
Ta có: \(\mathop {lim}\limits_{n \to + \infty } \left( {1 + \frac{1}{{{n^2}}}} \right)\; = 1,\;\mathop {lim}\limits_{n \to + \infty } \left( {\frac{2}{n} - \frac{1}{{{n^2}}}} \right)\; = 0\)
Suy ra \({u_n}\; = + \infty \)
b) \({v_n}\; = \sqrt {2{n^2} + 1} - n\; = \frac{{2{n^2} + 1 - {n^2}}}{{\sqrt {2{n^2} + 1} + n }}\; = \frac{{{n^2} + 1}}{{{n^2}\left( {\sqrt {\frac{2}{{{n^2}}} + \frac{1}{{{n^4}}} }+ \frac{1}{n} } \right)}} = \frac{{1 + \frac{1}{{{n^2}}}}}{{\sqrt {\frac{2}{{{n^2}}} + \frac{1}{{{n^4}}} }+ \frac{1}{n} }}\;\; = + \infty \)
Bài 5.3 trang 109 SGK Toán 11 Tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 5.3 yêu cầu tính đạo hàm của các hàm số sau:
a) y = x3 - 3x2 + 2x - 5
Áp dụng công thức đạo hàm của tổng và hiệu, ta có:
y' = 3x2 - 6x + 2
b) y = (x2 + 1)(x - 2)
Áp dụng công thức đạo hàm của tích, ta có:
y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1
c) y = (x + 1) / (x - 1)
Áp dụng công thức đạo hàm của thương, ta có:
y' = [(1)(x - 1) - (x + 1)(1)] / (x - 1)2 = (x - 1 - x - 1) / (x - 1)2 = -2 / (x - 1)2
d) y = sin(2x)
Áp dụng công thức đạo hàm của hàm hợp, ta có:
y' = cos(2x) * 2 = 2cos(2x)
Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo các bài tập sau:
Bài 5.3 trang 109 SGK Toán 11 Tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Việc nắm vững các công thức đạo hàm cơ bản và rèn luyện kỹ năng giải bài tập thường xuyên sẽ giúp học sinh đạt kết quả tốt trong môn Toán.
Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập