Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho các bài tập trong mục 6 trang 51, 52 sách giáo khoa Toán 11 tập 2 chương trình Kết nối tri thức. Bài viết này sẽ giúp học sinh hiểu rõ các khái niệm, định lý và phương pháp giải bài tập liên quan.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và đầy đủ nhất để hỗ trợ quá trình học tập của bạn. Hãy cùng tusach.vn khám phá lời giải chi tiết ngay sau đây!
Tháp lớn tại Bảo tàng Louvre ở Paris (H.7.66)
Video hướng dẫn giải
Tháp lớn tại Bảo tàng Louvre ở Paris (H.7.66) (với kết cấu kính và kim loại) có dạng hình chóp với đây là hình vuông có cạnh bằng 34 m, các cạnh bên bằng nhau và có độ dài xấp xỉ 32,3 m (theo Wikipedia.org).
Giải thích vì sao hình chiếu của đỉnh trên đây là tâm của đáy tháp.

Phương pháp giải:
Dựa vào kết quả bài 7.13 trang 43 là hai đường xiên bằng nhau khi và chỉ khi hình chiếu của chúng cũng bằng nhau
Lời giải chi tiết:
Tháp lớn tại Bảo tàng Louvre ở Paris có dạng hình chóp với các cạnh bên bằng nhau nên hình chiếu của đỉnh trên đáy tháp sẽ cách đều 4 đỉnh ở đáy mà đáy là hình vuông do đó hình chiếu của đỉnh là tâm của đáy tháp.
Video hướng dẫn giải
Cho hình chóp S.A1A2...An. Gọi O là hình chiếu của S trên mặt phẳng (A1A2...An).
a) Trong trường hợp hình chóp đã cho là đều, vị trí của điểm O có gì đặc biệt đối với đa giác đều A1A2...An?
b) Nếu đa giác A1A2...An là đều và O là tâm của đa giác đó thì hình chóp đã cho có gì đặc biệt?

Phương pháp giải:
Dựa vào kết quả bài 7.13 trang 43 là hai đường xiên bằng nhau khi và chỉ khi hình chiếu của chúng cũng bằng nhau
Lời giải chi tiết:
a) Hình chóp S.A1A2...An đều nên SA1 = SA2 = … = SAn
Vì O là hình chiếu của S trên mặt phẳng (A1A2...An) nên OA1, OA2, …, OAn lần lượt là hình chiếu của SA1, SA2, …, SAn
\( \Rightarrow \) OA1 = OA2 = … = OAn \( \Rightarrow \) O là tâm đường tròn ngoại tiếp đa giác đáy A1A2...An
b) Nếu đa giác A1A2...An là đều và O là tâm của đa giác đó thì OA1 = OA2 = … = OAn \( \Rightarrow \) SA1 = SA2 = … = SAn \( \Rightarrow \) Hình chóp S.A1A2...An là hình chóp đều
Video hướng dẫn giải
Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng \(a\sqrt {\frac{5}{{12}}} .\) Tính số đo của góc nhị diện [S, BC, A].
Phương pháp giải:
Từ một điểm O bất kì thuộc cạnh a của góc nhị diện [P, a, Q], vẽ các tia Ox, Oy tương ứng thuộc (P), (Q) và vuông góc với a. Góc xOy được gọi là một góc phẳng của góc nhị diện [P, a, Q].
Lời giải chi tiết:

Vì hình chóp S.ABC đều, gọi G là hình chiếu của S trên (ABC) nên G là tâm của đáy ABC là tam giác đều do đó G cũng là trọng tâm hay trực tâm của tam giác ABC.
Gọi AG cắt BC tại D
Ta có \(AG \bot BC,SG \bot BC \Rightarrow BC \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow BC \bot SD\)
\(BC \bot AD\) (G là trực tâm)
\( \Rightarrow \left[ {S,BC,A} \right] = \left( {AD,SD} \right) = \widehat {SDA}\)
Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\)
Mà G là trọng tâm nên \(GD = \frac{1}{3}AD = \frac{{a\sqrt 3 }}{6}\)
Xét tam giác SDC vuông tại D có
\(\begin{array}{l}S{D^2} + D{C^2} = S{C^2}\\ \Leftrightarrow S{D^2} + {\left( {\frac{a}{2}} \right)^2} = {\left( {a\sqrt {\frac{5}{{12}}} } \right)^2}\\ \Leftrightarrow S{D^2} = \frac{{{a^2}}}{6} \Leftrightarrow SD = \frac{{a\sqrt 6 }}{6}\end{array}\)
Xét tam giác SGD vuông tại G có
\(\cos \widehat {SGD} = \frac{{GD}}{{SD}} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {SGD} = {45^0}\)
Vậy số đo của góc nhị diện [S, BC, A] bằng 450.
Video hướng dẫn giải
Cho hình chóp đều S.A1A2...An. Một mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh SA1, SA2,.... SAn, tương ứng tai B1, B2,..., Bn

a) Giải thích vì sao S. B1B2...Bn là một hình chóp đều.
b) Gọi H là tâm của đa giác A1A2...An. Chứng minh rằng đường thẳng SH đi qua tâm K của đa giác đều B1B2...Bn, và HK vuông góc với các mặt phẳng (A1A2...An), (B1B2...Bn)
Phương pháp giải:
- Hình chóp đều là hình chóp có đáy là đa giác đều và các cạnh bên bằng nhau.
- Đường thẳng vuông góc với một mặt phẳng thì đường thẳng sẽ vuông góc với mọi mặt phẳng song song với mặt phẳng đó.
- Qua một điểm nằm ngoài đường thẳng chỉ có duy nhất 1 đường thẳng vuông góc với một mặt phẳng cho trước.
Lời giải chi tiết:
a) Vì mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh SA1, SA2,.... SAn, tương ứng tại B1, B2,..., Bn nên theo định lý Talet trong từng tam giác SA1A2, …, SAn-1An thì \(\frac{{S{B_1}}}{{S{A_1}}} = \frac{{S{B_2}}}{{S{A_2}}} = \frac{{{B_1}{B_2}}}{{{A_1}{A_2}}} = ... = \frac{{S{B_n}}}{{S{A_n}}}\) mà S.A1A2...An là hình chóp đều nên S.B1B2...Bn cũng là một hình chóp đều.
b) Ta có \(SH \bot \left( {{A_1}{A_2}...{A_n}} \right)\) (H là tâm của đa giác A1A2...An)
Mà \(\left( {{A_1}{A_2}...{A_n}} \right)//\left( {{B_1}{B_2}...{B_n}} \right)\)
\( \Rightarrow \)\(SH \bot \left( {{B_1}{B_2}...{B_n}} \right)\)
Mà \(SK \bot \left( {{B_1}{B_2}...{B_n}} \right)\) (K là tâm của đa giác B1B2...Bn)
\( \Rightarrow \) SH trùng SK
Vậy đường thẳng SH đi qua tâm K của đa giác đều B1B2...Bn, và HK vuông góc với các mặt phẳng (A1A2...An), (B1B2...Bn)
Video hướng dẫn giải
Hình chóp cụt đều có các cạnh bên bằng nhau hay không?
Phương pháp giải:
Dựa vào kết quả của hoạt động 13 trang 52
Lời giải chi tiết:
Hình chóp cụt đều có các cạnh bên bằng nhau vì theo hoạt động 13 có SB1 = SB2 = … = SBn , SA1= SA2=.... = SAn nên B1A1=…= BnAn
Mục 6 trong SGK Toán 11 tập 2 Kết nối tri thức tập trung vào các kiến thức về đường thẳng vuông góc với mặt phẳng. Đây là một trong những chủ đề quan trọng của chương trình Hình học không gian, đòi hỏi học sinh phải nắm vững các định nghĩa, định lý và phương pháp chứng minh.
Đề bài: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SA và mặt phẳng (ABCD).
Lời giải: Vì SA vuông góc với mặt phẳng (ABCD) nên góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 90 độ.
Đề bài: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, BC = b, SA vuông góc với mặt phẳng (ABCD) và SA = h. Tính khoảng cách từ điểm C đến mặt phẳng (SAD).
Lời giải: Để tính khoảng cách từ C đến (SAD), ta cần tìm hình chiếu vuông góc của C lên (SAD). Gọi H là hình chiếu của C lên AD. Khi đó, CH vuông góc với AD. Trong mặt phẳng (SAD), gọi K là hình chiếu của H lên SD. Khi đó, CK vuông góc với SD. Vậy CK là khoảng cách cần tìm. Áp dụng định lý Pitago và các công thức tính diện tích tam giác, ta có thể tính được CK.
Đề bài: Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau tại S. Biết SA = a, SB = b, SC = c. Tính thể tích của hình chóp S.ABC.
Lời giải: Vì SA, SB, SC đôi một vuông góc với nhau tại S, nên ta có thể coi SA, SB, SC là các cạnh vuông góc của hình hộp chữ nhật. Thể tích của hình chóp S.ABC được tính theo công thức: V = (1/6) * SA * SB * SC = (1/6) * a * b * c.
Hy vọng với lời giải chi tiết và các mẹo trên, các bạn học sinh sẽ tự tin hơn khi giải các bài tập trong mục 6 trang 51, 52 SGK Toán 11 tập 2 - Kết nối tri thức. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại đặt câu hỏi trong phần bình luận bên dưới. Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập