Chào mừng bạn đến với bài học về Lý thuyết Giới hạn của dãy số, một trong những chủ đề quan trọng của chương trình Toán 11 Kết nối tri thức.
Bài viết này sẽ cung cấp cho bạn kiến thức cơ bản, các định nghĩa, tính chất và ví dụ minh họa để bạn hiểu rõ về giới hạn của dãy số.
Chúng tôi sẽ giúp bạn nắm vững kiến thức này để tự tin giải các bài tập và ứng dụng vào các bài toán thực tế.
1, Giới hạn hữu hạn của dãy số
1, Giới hạn hữu hạn của dãy số
Ta nói dãy số \(\left( {{u_n}} \right)\) có giới hạn 0 khi n dần tới dương vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\) hay \({u_n} \to 0\) khi \(n \to + \infty \).
Ta nói dãy số \(\left( {{u_n}} \right)\) có giới hạn là số thực a khi n dần tới dương vô cực, nếu \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0\), kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a\) hay \({u_n} \to a\) khi \(n \to + \infty \).
* Chú ý: Nếu \({u_n} = c\) (c là hằng số) thì \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = c\)
2. Định lí về giới hạn hữu hạn của dãy số
a, Nếu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a,\mathop {\lim }\limits_{n \to + \infty } {v_n} = b\) thì
\(\mathop {\lim }\limits_{n \to + \infty } ({u_n} \pm {v_n}) = a \pm b\)
\(\mathop {\lim }\limits_{n \to + \infty } ({u_n}.{v_n}) = a.b\)
\(\mathop {\lim }\limits_{n \to + \infty } (\frac{{{u_n}}}{{{v_n}}}) = \frac{a}{b}\left( {b \ne 0} \right)\)
b, Nếu \({u_n} \ge 0\) thì với mọi n và \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a\) thì \(a \ge 0\) và \(\mathop {\lim }\limits_{n \to + \infty } \sqrt {{u_n}} = \sqrt a \).
3. Tổng của cấp số nhân lùi vô hạn
\(S = \frac{{{u_1}}}{{1 - q}}\left( {\left| q \right| < 1} \right)\)
4. Giới hạn vô cực của dãy số
Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( + \infty \)khi \(n \to + \infty \)nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = + \infty \) hay \({u_n} \to + \infty \) khi \(n \to + \infty \).
Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( - \infty \) khi \(n \to + \infty \) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left( { - {u_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = - \infty \) hay \({u_n} \to - \infty \) khi \(n \to + \infty \).
*Quy tắc:
Nếu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = a\) và \(\mathop {\lim }\limits_{x \to + \infty } {v_n} = + \infty \)(hoặc\(\mathop {\lim }\limits_{x \to + \infty } {v_n} = - \infty \)) thì \(\mathop {\lim }\limits_{n \to + \infty } (\frac{{{u_n}}}{{{v_n}}}) = 0\).
Nếu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = a > 0\) và \(\mathop {\lim }\limits_{x \to + \infty } {v_n} = 0,\forall n\) thì \(\mathop {\lim }\limits_{n \to + \infty } (\frac{{{u_n}}}{{{v_n}}}) = + \infty \).
Nếu \(\mathop {\lim }\limits_{x \to + \infty } {v_n} = a > 0\) và \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = + \infty \) thì \(\mathop {\lim }\limits_{n \to + \infty } ({u_n}.{v_n}) = + \infty \).

Giới hạn của dãy số là một khái niệm nền tảng trong giải tích, đóng vai trò quan trọng trong việc xây dựng các khái niệm phức tạp hơn như đạo hàm và tích phân. Trong chương trình Toán 11 Kết nối tri thức, việc nắm vững lý thuyết này là điều kiện cần thiết để giải quyết các bài toán liên quan đến dãy số và chuỗi số.
Một dãy số (un) được gọi là có giới hạn L nếu với mọi số dương ε (epsilon) nhỏ tùy ý, tồn tại một số tự nhiên N sao cho với mọi n > N, ta có |un - L| < ε. Ký hiệu: limn→∞ un = L.
Có ba trường hợp chính về giới hạn của dãy số:
Các tính chất quan trọng cần nhớ:
Một số dạng giới hạn thường gặp:
Ví dụ 1: Tìm giới hạn của dãy số un = 2n + 1.
limn→∞ (2n + 1) = +∞. Dãy số phân kỳ ra vô cùng.
Ví dụ 2: Tìm giới hạn của dãy số un = 1/n.
limn→∞ (1/n) = 0. Dãy số hội tụ về 0.
Để củng cố kiến thức, hãy thử giải các bài tập sau:
Lưu ý: Việc hiểu rõ định nghĩa và các tính chất của giới hạn là chìa khóa để giải quyết các bài toán liên quan đến dãy số. Hãy luyện tập thường xuyên để nắm vững kiến thức này.
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức hữu ích về Lý thuyết Giới hạn của dãy số - SGK Toán 11 Kết nối tri thức. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập