1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 5.25 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức

Bài 5.25 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức

Bài 5.25 trang 124 SGK Toán 11 Tập 1 - Kết Nối Tri Thức

Bài 5.25 thuộc chương trình Toán 11 Tập 1, sách Kết Nối Tri Thức, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh hiểu rõ các quy tắc tính đạo hàm và áp dụng chúng một cách linh hoạt.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho dãy số (left( {{u_n}} right)) có tính chất (left| {{u_n} - 1} right| < frac{2}{n}). Có kết luận gì về giới hạn của dãy số này?

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) có tính chất \(\left| {{u_n} - 1} \right| < \frac{2}{n}\). Có kết luận gì về giới hạn của dãy số này?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 5.25 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức 1

Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử và mẫu cho lũy thừa cao nhất của n, rồi áp dụng quy tắc tính giới hạn

Lời giải chi tiết

\(\left| {{u_n} - 1} \right| < \frac{2}{n}\)

\( - \frac{2}{n} < {u_n} - 1 < \frac{2}{n}\)

\( - \frac{2}{n} + 1 < {u_n} < \frac{2}{n} + 1\)

\(\lim \left( { - \frac{2}{n} + 1} \right) = 1;\;\;\lim \left( {\frac{2}{n} + 1} \right) = 1\)

\( \Rightarrow \lim {u_n} = 1\)

Giải Bài 5.25 Trang 124 SGK Toán 11 Tập 1 - Kết Nối Tri Thức Chi Tiết

Bài 5.25 trang 124 SGK Toán 11 Tập 1 - Kết Nối Tri Thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Để giải bài tập này, chúng ta cần nắm vững các khái niệm và quy tắc sau:

  • Đạo hàm của hàm số: Hiểu rõ định nghĩa đạo hàm và cách tính đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit).
  • Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp.
  • Ứng dụng của đạo hàm: Biết cách sử dụng đạo hàm để tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập:

Bài 5.25 thường yêu cầu học sinh tính đạo hàm của một hàm số hoặc giải một phương trình, bất phương trình liên quan đến đạo hàm. Ví dụ:

Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm f'(x):
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm cực trị:
  4. Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:

    3x2 - 6x = 0

    3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Xác định loại cực trị:
  6. Ta xét dấu của f'(x) trên các khoảng:

    • Khoảng (-∞, 0): f'(x) > 0, hàm số đồng biến.
    • Khoảng (0, 2): f'(x) < 0, hàm số nghịch biến.
    • Khoảng (2, +∞): f'(x) > 0, hàm số đồng biến.

    Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Mẹo giải bài tập:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài tập.
  • Sử dụng các công thức và quy tắc đạo hàm một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Các bài tập tương tự:

Để luyện tập thêm, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 11 Tập 1 - Kết Nối Tri Thức hoặc trên các trang web học tập trực tuyến khác.

Kết luận:

Bài 5.25 trang 124 SGK Toán 11 Tập 1 - Kết Nối Tri Thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các khái niệm, quy tắc và ứng dụng của đạo hàm, học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.

Hàm sốĐạo hàm
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)
f(x) = cos(x)f'(x) = -sin(x)

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN