Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 11 tập 1 - Kết nối tri thức. Mục 1 trang 111, 112, 113 chứa những bài tập quan trọng, giúp học sinh nắm vững kiến thức về...
Chúng tôi hiểu rằng việc tự giải bài tập đôi khi gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của tusach.vn đã biên soạn lời giải chi tiết, dễ hiểu, giúp bạn tự tin hơn trong quá trình học tập.
Cho hàm số (fleft( x right) = frac{{4 - {x^2}}}{{x - 2}}) a) Tìm tập xác định của hàm số (fleft( x right)) b) Cho dãy số ({x_n} = frac{{2n + 1}}{n}). Rút gọn (fleft( {{x_n}} right)) và tính giới hạn của dãy (left( {{u_n}} right)) với ({u_n} = fleft( {{x_n}} right)) c) Với dãy số (left( {{x_n}} right)) bất kì sao cho ({x_n} ne 2) và ({x_n} to 2), tính (fleft( {{x_n}} right)) và tìm (mathop {{rm{lim}}}limits_{n to + infty } fleft( {{x_n}} right))
Video hướng dẫn giải
Cho hàm số \(f\left( x \right) = \frac{{4 - {x^2}}}{{x - 2}}\)
a) Tìm tập xác định của hàm số \(f\left( x \right)\)
b) Cho dãy số \({x_n} = 2 + \frac{{1}}{n}\). Rút gọn \(f\left( {{x_n}} \right)\) và tính giới hạn của dãy \(\left( {{u_n}} \right)\) với \({u_n} = f\left( {{x_n}} \right)\)
c) Với dãy số \(\left( {{x_n}} \right)\) bất kì sao cho \({x_n} \ne 2\) và \({x_n} \to 2\), tính \(f\left( {{x_n}} \right)\) và tìm \(\mathop {{\rm{lim}}}\limits_{n \to + \infty } f\left( {{x_n}} \right)\)
Phương pháp giải:
Giả sử \(\left( {a,b} \right)\) là một khoảng chứa điểm \({x_0}\) và hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a,b} \right)\), có thể trừ điểm \({x_0}\). Ta nói hàm số \(f\left( x \right)\) có giới hạn là số L khi x dần tới \({x_0}\) nếu với dãy số \(\left( {{x_0}} \right)\) bất kì, , ta có \(f\left( {{x_n}} \right) \to L,\) ký hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) hay khi \(x \to {x_0}\)
Lời giải chi tiết:
a) \(D = \mathbb{R}/\left\{ 2 \right\}\;\)
b) \(x_n = 2 + \frac{{1}}{n} = \frac{2n+1}{n}\)
\(f\left( {{x_n}} \right) = \frac{{4 - {{\left( {\frac{{2n + 1}}{4}} \right)}^2}}}{{\frac{{2n + 1}}{n} - 2}} = \frac{{ - \left( {\frac{{2n + 1}}{n} - 2} \right)\left( {\frac{{2n + 1}}{n} + 2} \right)}}{{\frac{{2n + 1}}{n} - 2}} = - \frac{{2n + 1}}{n} - 2\)
\(\mathop {\lim }\limits_{n \to + \infty } {x_n} = \mathop {\lim }\limits_{n \to + \infty } \left( { - \frac{{2n + 1}}{n} - 2} \right) = - 4\)
c) \(f\left( {{x_n}} \right) = \frac{{4 - x_n^2}}{{{x_n} - 2}}\)
\(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right) = - 4\).
Video hướng dẫn giải
Tính \(\mathop {{\rm{lim}}}\limits_{x \to 1} \) \(\frac{{x - 1}}{{\sqrt x - 1}}\).
Phương pháp giải:
Nếu \(f\left( x \right) \ge 0\) với mọi \(x \in \left( {a,b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L \).
Lời giải chi tiết:
\(\mathop {\lim }\limits_{n \to 1} \frac{{x - 1}}{{\sqrt x - 1}} = \mathop {\lim }\limits_{n \to 1} \left( {\sqrt x + 1} \right) = 2\).
Video hướng dẫn giải
Cho hàm số \(f\left( x \right) = \frac{{\left| {x - 1} \right|}}{{x - 1}}\)
a) Cho \({x_n} = 1 - \frac{1}{{n + 1}}\) và \({x'_n} = 1+ \frac{{1}}{n}\). Tính \({y_n} = f\left( {{x_n}} \right)\) và \({y'_n} = f\left( {{{x'}_n}} \right)\)
b) Tìm giới hạn của các dãy số \(\left( {{y_n}} \right)\) và \(\left( {{{y'}_n}} \right)\)
c) Cho các dãy số \(\left( {{x_n}} \right)\) và \(\left( {{{x'}_n}} \right)\) bất kì sao cho \({x_n} < 1 < x{'_n}\) và \({x_n} \to 1,\;\;\;x{'_n} \to 1\), tính \(\mathop {{\rm{lim}}}\limits_{n \to + \infty } f\left( {{x_n}} \right)\) và \(\mathop {{\rm{lim}}}\limits_{n \to + \infty } f\left( {{{x'}_n}} \right)\)
Phương pháp giải:
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {{x_0};b} \right)\). Ta nói số L là giới hạn bên phải của \(f\left( x \right)\) khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\) ta có \(f\left( {{x_n}} \right) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\).
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\). Ta nói số L là giới hạn bên trái của \(f\left( x \right)\) khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0},\) ta có \(f\left( {{x_n}} \right) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\).
Lời giải chi tiết:
a, \({x_n} = 1 - \frac{1}{{n + 1}} = \frac{n}{{n + 1}}\) và \({x'_n} = 1+ \frac{{1}}{n} = \frac{{n + 1}}{n}\)
Với \({x_n} = \frac{n}{{n + 1}} \Rightarrow {y_n} = f\left( {{x_n}} \right) = \frac{{\left| {\frac{n}{{n + 1}} - 1} \right|}}{{\frac{n}{{n + 1}} - 1}}\)
Do \(n < n + 1 \Rightarrow \frac{n}{{n + 1}} < 1 \Rightarrow \frac{n}{{n + 1}} - 1 < 0\)
\( \Rightarrow {y_n} = \frac{{ - \left( {\frac{n}{{n + 1}} - 1} \right)}}{{\frac{n}{{n + 1}} - 1}} = - 1\)
Với \(x{'_n} = \frac{{n + 1}}{n} \Rightarrow y{'_n} = f\left( {{x_n}} \right) = \frac{{\left| {\frac{{n + 1}}{n} - 1} \right|}}{{\frac{{n + 1}}{n} - 1}}\)
Do \(n + 1 > n \Rightarrow \frac{{n + 1}}{n} > 1 \Rightarrow \frac{{n + 1}}{n} - 1 > 0\)
\({y_n} = \frac{{\frac{{n + 1}}{n} - 1}}{{\frac{{n + 1}}{n} - 1}} = 1\)
b) \(\lim \left( {{y_n}} \right) = \lim \left( { - 1} \right) = - 1\)
\(\lim \left( {{{y'}_n}} \right) = \lim 1 = 1\).
c) \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right) = - 1\)
\(\mathop {\lim }\limits_{n \to + \infty } f(x{'_n}) = 1\).
Video hướng dẫn giải
Cho hàm số \(f(x) = \left\{ \begin{array}{l} - x,x < 0\\\sqrt x ,x \ge 0\end{array} \right.\)
Tính \(\mathop {{\rm{lim}}}\limits_{x \to {0^ + }} f\left( x \right),\;\;\;\;\mathop {{\rm{lim}}}\limits_{x \to {0^ - }} \;f\left( x \right)\) và \(\mathop {{\rm{lim}}}\limits_{x \to 0} \;f\left( x \right)\).
Phương pháp giải:
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\)
Lời giải chi tiết:
Với dãy số \(\left( {{x_n}} \right)\) bất kì sao cho \(x < 0,\) ta có: \(f\left( {{x_n}} \right) = - {x_n}\)
Do đó: \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 0 \).
Với dãy số \(\left( {{x_n}} \right)\) bất kì sao cho \(x \ge 0\) ta có: \(f\left( {{x_n}} \right) = \sqrt x \)
Do đó: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 0 \).
Do \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 0 \) suy ra \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 0\).
Mục 1 trong SGK Toán 11 tập 1 - Kết nối tri thức tập trung vào việc ôn tập và hệ thống hóa kiến thức về hàm số bậc hai. Các bài tập trang 111, 112, 113 yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 1: Xác định hệ số a, b, c của hàm số y = 2x2 - 5x + 3.
Lời giải: a = 2, b = -5, c = 3.
Bài 2: Vẽ đồ thị của hàm số y = x2 - 4x + 3.
Lời giải: (Hướng dẫn vẽ đồ thị: Xác định đỉnh, trục đối xứng, giao điểm với trục hoành và trục tung).
Bài 3: Giải phương trình 2x2 - 5x + 2 = 0.
Lời giải: Sử dụng công thức nghiệm của phương trình bậc hai: x = (-b ± √(b2 - 4ac)) / 2a. Tính delta (Δ) = b2 - 4ac = (-5)2 - 4 * 2 * 2 = 9. Vậy phương trình có hai nghiệm phân biệt: x1 = (5 + 3) / 4 = 2 và x2 = (5 - 3) / 4 = 1/2.
Bài 4: Tìm điều kiện để phương trình x2 - 2(m+1)x + m2 + 2m = 0 có nghiệm.
Lời giải: Phương trình có nghiệm khi và chỉ khi delta (Δ) ≥ 0. Tính delta (Δ) = (-2(m+1))2 - 4 * 1 * (m2 + 2m) = 4(m2 + 2m + 1) - 4m2 - 8m = 4. Vì delta (Δ) = 4 > 0 với mọi m, nên phương trình luôn có nghiệm.
Bài 5: Giải bất phương trình x2 - 3x + 2 > 0.
Lời giải: Tìm nghiệm của phương trình x2 - 3x + 2 = 0. Phương trình có hai nghiệm x1 = 1 và x2 = 2. Vì hệ số a = 1 > 0, nên bất phương trình có nghiệm khi x < 1 hoặc x > 2.
Bài 6: Tìm tập nghiệm của bất phương trình -x2 + 4x - 3 ≤ 0.
Lời giải: Nhân cả hai vế của bất phương trình với -1 và đổi dấu: x2 - 4x + 3 ≥ 0. Tìm nghiệm của phương trình x2 - 4x + 3 = 0. Phương trình có hai nghiệm x1 = 1 và x2 = 3. Vì hệ số a = 1 > 0, nên bất phương trình có nghiệm khi x ≤ 1 hoặc x ≥ 3.
Tại sao nên chọn tusach.vn để giải bài tập Toán 11?
Hãy truy cập tusach.vn ngay hôm nay để giải quyết mọi khó khăn trong quá trình học Toán 11!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập