Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 trang 6, 7, 8 sách giáo khoa Toán 11 Tập 1 chương trình Kết nối tri thức. Bài viết này sẽ giúp các em học sinh hiểu rõ hơn về kiến thức và phương pháp giải các bài toán liên quan.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ quá trình học tập của các em.
Trên đồng hồ ở Hình 1.2, kim phút đang chỉ đúng số 2. a) Phải quay kim phút mấy phần của một vòng tròn theo chiều quay ngược chiều kim đồng hồ để nó chỉ đúng số 12?
Video hướng dẫn giải
Trên đồng hồ ở Hình 1.2, kim phút đang chỉ đúng số 2.
a) Phải quay kim phút mấy phần của một vòng tròn theo chiều quay ngược chiều kim đồng hồ để nó chỉ đúng số 12?
b) Phải quay kim phút mấy phần của một vòng tròn theo chiều quay của kim đồng hồ để nó chỉ đúng số 12?
c) Có bao nhiêu cách quay kim phút theo một chiều xác định để kim phút từ vị trí chỉ đúng số 2 về vị trí chỉ đúng số 12?

Phương pháp giải:
Đồng hồ được chia thành từng phần theo các số, kim phút đi qua bao nhiêu số thì quay bấy nhiêu phần của vòng tròn.
Lời giải chi tiết:
a) Khi kim phút quay theo ngược chiều kim đồng hồ để nó chỉ đúng số 12, kim phút quay:
\(\frac{2}{{12}} = \frac{1}{6}\) phần của vòng tròn
b) Khi kim phút quay theo đúng chiều kim đồng hồ để nó chỉ đúng số 12, kim phút quay:
\(\frac{{10}}{{12}} = \frac{5}{6}\) phần của vòng tròn
c) Có 2 cách quay kim phút theo một chiều xác định để kim phút từ vị trí chỉ đúng số 2 về vị trí chỉ đúng số 12, đó là: ngược chiều kim đồng hồ và cùng chiều kim đồng hồ
Video hướng dẫn giải
Cho góc hình học \(\widehat {uOv} = {45^0}\). Xác định số đo của góc lượng giác \((Ou,Ov)\) trong mỗi trường hợp sau:

Phương pháp giải:
Mỗi góc lượng giác gốc O được xác định bởi tia đầu Ou, tia cuối Ov và số đo của nó.
Lời giải chi tiết:
a) Ta có:
- Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là \((Ou,Ov) = {45^ \circ } + k{.360^ \circ }\)
b) Ta có:
- Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là \((Ou,Ov) = - {315^ \circ } + k{.360^ \circ }\)
Video hướng dẫn giải
Cho ba tia Ou, Ov, Owvới số đo của các góc hình học uOv và vOw lần lượt là \({30^ \circ }\) và \({45^ \circ }\)
a) Xác định số đo của ba góc lượng giác \((Ou,Ov)\) ,\((Ov,Ow\) và \((Ou,Ow)\) được chỉ ra ở Hình 1.5.
b) Với các góc lượng giác ở câu a, chứng tỏ rằng có một số nguyên k để
sđ\((Ou,Ov)\) + sđ\((Ov,Ow\) = sđ \((Ou,Ow)\) + k\({.360^ \circ }\)

Phương pháp giải:
Xác định các tia đầu, tia cuối và chiều quay để tìm được số đo của các góc lượng giác.
Lời giải chi tiết:
a) Ta có:
- Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là
sđ\((Ou,Ov) = {30^ \circ } + n{.360^ \circ }\)
- Các góc lượng giác tia đầu Ov, tia cuối Ow có số đo là
sđ \((Ov,Ow) = {45^ \circ } + m{.360^ \circ }\)
- Các góc lượng giác tia đầu Ou, tia cuối Ow có số đo là
sđ \((Ou,Ow) = {75^ \circ } + k{.360^ \circ }\)
b) Với các góc lượng giác ở câu a, ta có:
\(sđ(Ou,Ov) +sđ (Ov,Ow)\)
\( = {30^ \circ } + n{.360^ \circ } + {45^ \circ } + m{.360^ \circ } \)
\(= {75^ \circ } + (n+m){.360^ \circ } \)
\(= {75^ \circ } + k{.360^ \circ = sđ (Ou,Ow)} \)
với k = n + m
Video hướng dẫn giải
Cho một góc lượng giác $(O x, O u)$ có số đo $240^{\circ}$ và một góc lượng giác $(O x, O v)$ có số đo $-270^{\circ}$. Tính số đo của các góc lượng giác $(O u, O v)$.
Phương pháp giải:
Áp dụng hệ thức Charles: Với ba tia tùy ý \(O x, O u, O v \), ta có:
sđ\((Ou,Ov)\) = sđ\((Ox,Ov)\) - sđ \((Ox,Ou)\) + k\({.360^ \circ }\)
Lời giải chi tiết:
Số đo của các góc lượng giác tia đầu $O u$, tia cuối $O v$ là\(sđ(O u, O v) = sđ(O x, O v) - sđ(O x, O u)+ k{360}^{\circ}(k \in \mathbb{Z}) \)
\(=-270^{\circ}-240^{\circ}+k 360^{\circ}=-510^{\circ}+k 360^{\circ} \)\( =-150^{\circ}+(k-1) 360^{\circ}=-150^{\circ}+n 360^{\circ} \quad(n=k-1, n \in \mathbb{Z})\)Vậy các góc lượng giác $(O u, O v)$ có số đo là $-150^{\circ}+n 360^{\circ} \quad(n \in \mathbb{Z})$.
Mục 1 của SGK Toán 11 Tập 1 chương trình Kết nối tri thức tập trung vào việc ôn tập và mở rộng kiến thức về hàm số và đồ thị. Các bài tập trong mục này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, đồng thời rèn luyện kỹ năng tư duy logic và phân tích.
Dưới đây là lời giải chi tiết cho từng bài tập trong mục 1 trang 6, 7, 8 SGK Toán 11 Tập 1 - Kết nối tri thức:
Đề bài: ... (Nội dung bài tập)
Lời giải: ... (Lời giải chi tiết, bao gồm các bước giải và giải thích rõ ràng)
Đề bài: ... (Nội dung bài tập)
Lời giải: ... (Lời giải chi tiết, bao gồm các bước giải và giải thích rõ ràng)
Đề bài: ... (Nội dung bài tập)
Lời giải: ... (Lời giải chi tiết, bao gồm các bước giải và giải thích rõ ràng)
Đề bài: ... (Nội dung bài tập)
Lời giải: ... (Lời giải chi tiết, bao gồm các bước giải và giải thích rõ ràng)
Đề bài: ... (Nội dung bài tập)
Lời giải: ... (Lời giải chi tiết, bao gồm các bước giải và giải thích rõ ràng)
Kiến thức về hàm số và đồ thị có ứng dụng rộng rãi trong nhiều lĩnh vực của đời sống và khoa học, như kinh tế, kỹ thuật, vật lý, hóa học,... Việc nắm vững kiến thức này sẽ giúp các em học sinh giải quyết các bài toán thực tế một cách hiệu quả.
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em học sinh sẽ tự tin hơn trong việc giải các bài tập trong mục 1 trang 6, 7, 8 SGK Toán 11 Tập 1 - Kết nối tri thức. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập