Bài 7.25 thuộc chương trình Toán 11 tập 2, sách Kết nối tri thức, tập trung vào việc giải quyết các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để tìm đạo hàm, xét dấu đạo hàm và xác định các điểm cực trị của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Cho hình lập phương ABCD.A'B'C'D' có cạnh a.
Đề bài
Cho hình lập phương ABCD.A'B'C'D' có cạnh a.
a) Chứng minh rằng hai mặt phẳng (D'AC) và (BC'A') song song với nhau và DB' vuông góc với hai mặt phẳng đó.
b) Xác định các giao điểm E, F của DB' với (D'AC),(BC'A'). Tính d((D'AC), (BC'A')).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Hai mặt phẳng song song nếu 2 đường thẳng cắt nhau trong mặt phẳng này lần lượt song song với 2 đường thẳng cắt nhau trong mặt phẳng kia.
- Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia.
Lời giải chi tiết

a) AC // A’C’, D’C // A’B \( \Rightarrow \) (D'AC) // (BC'A')
Ta có \(AC \bot BD,AC \bot BB' \Rightarrow AC \bot \left( {BDB'} \right);B'D \subset \left( {BDB'} \right) \Rightarrow AC \bot B'D\)
Mà AC // A’C’ \( \Rightarrow \) \(B'D \bot A'C'\)
Ta có \(AB' \bot A'B,AD \bot A'B \Rightarrow A'B \bot \left( {AB'D} \right);B'D \subset \left( {AB'D} \right) \Rightarrow A'B \bot B'D\)
Mà A’B // D’C \( \Rightarrow \) \(B'D \bot D'C\)
Ta có \(B'D \bot AC,B'D \bot D'C \Rightarrow B'D \bot \left( {D'AC} \right)\)
\(B'D \bot A'C',B'D \bot A'B \Rightarrow B'D \bot \left( {BA'C'} \right)\)
b) Gọi \(AC \cap BD = \left\{ O \right\},A'C' \cap B'D' = \left\{ {O'} \right\}\)
Trong (BB’D’D) nối \(D'O \cap B'D = \left\{ E \right\},BO' \cap B'D = \left\{ F \right\}\)
Vì (D'AC) // (BC'A') nên d((D'AC), (BC'A')) = d(E, (BC'A')) = EF do \(B'D \bot \left( {BA'C'} \right)\)
\(\left. \begin{array}{l}B'D \bot BO'\left( {B'D \bot \left( {BA'C'} \right)} \right)\\B'D \bot OD'\left( {B'D \bot \left( {D'AC} \right)} \right)\end{array} \right\} \Rightarrow BO'//OD'\)
Áp dụng định lí Talet có \(\frac{{DE}}{{EF}} = \frac{{DO}}{{BO}} = 1 \Rightarrow DE = EF\) và \(\frac{{B'F}}{{EF}} = \frac{{B'O'}}{{O'D'}} = 1 \Rightarrow B'F = EF\)
\( \Rightarrow EF = \frac{{B'D}}{3}\)
Xét tam giác ABD vuông tại A có \(BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
Xét tam giác BB’D vuông tại B có \(B'D = \sqrt {B{{B'}^2} + B{D^2}} = \sqrt {{a^2} + {{\left( {a\sqrt 2 } \right)}^2}} = a\sqrt 3 \)
\( \Rightarrow EF = \frac{{a\sqrt 3 }}{3}\)
Vậy \(d\left( {\left( {D'AC} \right),{\rm{ }}\left( {BC'A'} \right)} \right) = \frac{{a\sqrt 3 }}{3}\)
Bài 7.25 trang 59 SGK Toán 11 tập 2 Kết Nối Tri Thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc khảo sát hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này, được trình bày một cách dễ hiểu và logic.
Bài tập yêu cầu học sinh khảo sát hàm số f(x) = x3 - 3x2 + 2. Cụ thể, học sinh cần:
f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Ta xét dấu của f'(x) trên các khoảng:
Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
f(0) = 2, điểm cực đại là (0; 2).
f(2) = -2, điểm cực tiểu là (2; -2).
Dựa vào bảng xét dấu f'(x), ta có:
Dựa vào các thông tin đã tìm được, ta có thể vẽ đồ thị hàm số f(x) = x3 - 3x2 + 2.
Khi giải bài tập về khảo sát hàm số, học sinh cần nắm vững các bước sau:
Để rèn luyện thêm kỹ năng giải toán, học sinh có thể tham khảo các bài tập tương tự trong SGK Toán 11 tập 2 Kết Nối Tri Thức hoặc trên các trang web học toán trực tuyến như tusach.vn.
Bài 7.25 trang 59 SGK Toán 11 tập 2 Kết Nối Tri Thức là một bài tập quan trọng giúp học sinh hiểu sâu hơn về đạo hàm và ứng dụng của nó trong việc khảo sát hàm số. Hy vọng với lời giải chi tiết và hướng dẫn trên, học sinh có thể tự tin giải quyết bài tập này và các bài tập tương tự một cách hiệu quả.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập