Bài 6.17 thuộc chương trình Toán 11 Tập 2, sách Kết Nối Tri Thức, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các vấn đề cụ thể.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm tập xác định của các hàm số sau:
Đề bài
Tìm tập xác định của các hàm số sau:
a) \(y = \log \left| {x + 3} \right|;\)
b) \(y = \ln \left( {4 - {x^2}} \right).\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
\({\log _a}x\) có nghĩa khi \(x > 0.\)
Lời giải chi tiết
a) \(y = \log \left| {x + 3} \right|\) có nghĩa khi \(\left| {x + 3} \right| > 0\)
Mà \(\left| {x + 3} \right| \ge 0 \) với mọi \( x \in \mathbb{R}\) nên \(\left| {x + 3} \right| > 0\) khi \( x + 3 \not = 0 \Leftrightarrow x \not = -3\)
Vậy tập xác định của hàm số \(y = \log \left| {x + 3} \right|\) là \(\mathbb{R}\backslash \left\{ -3 \right\}\).
b) \(y = \ln \left( {4 - {x^2}} \right)\) có nghĩa khi \(4 - {x^2} > 0 \Leftrightarrow {x^2} < 4 \Leftrightarrow - 2 < x < 2.\)
Vậy tập xác định của hàm số \(y = \ln \left( {4 - {x^2}} \right)\) là \(\left( { - 2;2} \right).\)
Bài 6.17 trang 19 SGK Toán 11 Tập 2 Kết Nối Tri Thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
(Giả sử nội dung bài tập là: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)
Hàm số y = f(x) = x3 - 3x2 + 2 có tập xác định là D = ℝ.
f'(x) = 3x2 - 6x
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + |
Khi giải các bài tập về khảo sát hàm số bằng đạo hàm, cần thực hiện đầy đủ các bước và lập bảng xét dấu đạo hàm một cách chính xác để đảm bảo kết quả đúng.
Ngoài việc tìm các điểm cực trị, đạo hàm còn được sử dụng để xác định khoảng đồng biến, nghịch biến của hàm số, tìm giới hạn của hàm số tại vô cùng và vẽ đồ thị hàm số. Việc nắm vững các ứng dụng của đạo hàm sẽ giúp học sinh hiểu sâu hơn về hàm số và giải quyết các bài toán phức tạp hơn.
Tại sao nên chọn tusach.vn để học Toán 11?
Hãy truy cập tusach.vn để học Toán 11 hiệu quả hơn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập