Bài 4.44 thuộc chương trình Toán 11 Tập 1, sách Kết Nối Tri Thức, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế, giúp củng cố và nâng cao hiểu biết về đạo hàm.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD. a) Chứng minh rằng GK // (ABCD) b) Mặt phẳng chứa đường thằng GK và song song với mặt phằng (ABCD) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, E, F. Chứng minh rằng tứ giác MNEF là hình bình hành.
Đề bài
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD.
a) Chứng minh rằng GK // (ABCD).
b) Mặt phẳng chứa đường thằng GK và song song với mặt phằng (ABCD) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, E, F. Chứng minh rằng tứ giác MNEF là hình bình hành.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng nằm trong (P) thì a song song với (P).
Lời giải chi tiết

a) Gọi H là trung điểm của SD.
Xét tam giác SAD có G là trọng tâm, suy ra \(\frac{{HG}}{{HA}} = \frac{1}{3}\).
Xét tam giác SCD có K là trọng tâm, suy ra \(\frac{{HK}}{{HC}} = \frac{1}{3}\).
Xét tam giác HAC có \(\frac{{HG}}{{HA}} = \frac{{HK}}{{HC}} = \frac{1}{3}\) suy ra GK // AC (định lí Thales đảo).
Mà \(GK\not{ \subset }(ABCD)\), \(AC \subset (ABCD)\) nên GK // (ABCD).
b) Vì (MNEF) // (ABCD) nên mọi đường thẳng thuộc (MNEF) đều không cắt các đường thẳng thuộc (ABCD).
Suy ra MN không cắt AB. Mà MN, AB cùng thuộc mặt phẳng (SAB). Do đó MN // AB (1).
Chứng minh tương tự, được EF // CD (2).
Mà AB // CD (ABCD là hình bình hành) (3).
Từ (1), (2), (3) suy ra MN // EF (4).
Chứng minh tương tự, được NE // MF (5).
Từ (4), (5) suy ra MNEF là hình bình hành.
Bài 4.44 trang 103 SGK Toán 11 Tập 1 Kết Nối Tri Thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
(Giả sử nội dung bài tập là: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)
Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ.
y' = 3x2 - 6x
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | ↗ | ↘ | ↗ |
Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.
Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.
Để luyện tập thêm, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 11 Tập 1 Kết Nối Tri Thức hoặc trên các trang web học toán trực tuyến.
Tusach.vn cung cấp đầy đủ lời giải chi tiết, đáp án và hướng dẫn giải các bài tập trong SGK Toán 11 Tập 1 Kết Nối Tri Thức. Chúng tôi luôn cập nhật nội dung mới nhất và đảm bảo tính chính xác cao. Hãy truy cập tusach.vn để học tập và ôn luyện Toán 11 hiệu quả!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập