Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 11 tập 2 - Kết Nối Tri Thức. Chúng tôi hiểu rằng việc tự học đôi khi gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức.
Bài viết này sẽ tập trung vào việc giải Mục 3 trang 46, 47, giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Cho hai mặt phẳng (P) và (Q) vuông góc với nhau.
Video hướng dẫn giải
Cho hai mặt phẳng (P) và (Q) vuông góc với nhau. Kẻ đường thẳng a thuộc (P) và vuông góc với giao tuyến \(\Delta \) của (P) và (Q). Gọi O là giao điểm của a và \(\Delta \). Trong mặt phẳng (Q), gọi b là đường thẳng vuông góc với \(\Delta \) tại O.

a) Tính góc giữa a và b.
b) Tìm mỗi quan hệ giữa a và (Q).
Phương pháp giải:
- Sử dụng nhận xét trang 45 để xác định góc giữa 2 mặt phẳng.
- Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó.
Lời giải chi tiết:
a) \(\left\{ \begin{array}{l}(P) \cap (Q) = \Delta \\a \subset (P),a \bot \Delta \\b \subset (Q),b \bot \Delta \end{array} \right. \Rightarrow \left( {(P),(Q)} \right) = \left( {a,b} \right)\)
Do \((P) \bot (Q) \Rightarrow \left( {(P),(Q)} \right) = {90^0} \Rightarrow \left( {a,b} \right) = {90^0}\)
b) Do \(\left\{ \begin{array}{l}a \bot b\\a \bot \Delta \\b \cap \Delta \end{array} \right. \Rightarrow a \bot (Q)\)
Video hướng dẫn giải
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến a và cùng vuông góc với mặt phẳng (R). Gọi O là một điểm thuộc a và a' là đường thẳng qua O và vuông góc với (R).

a) Hỏi a' có nằm trong các mặt phẳng (P), (Q) hay không?
b) Tìm mối quan hệ giữa a và a'.
c) Tìm mối quan hệ giữa a và (R).
Phương pháp giải:
Cho hai mặt phẳng (P) và (Q) vuông góc với nhau. Mỗi đường thẳng qua điểm O thuộc (P) và vuông góc với mặt phẳng (Q) thì đường thẳng đó thuộc mặt phẳng (P).
Lời giải chi tiết:
a) Vì O là một điểm thuộc a là giao tuyến của hai mặt phẳng (P), (Q) và a' là đường thẳng qua O và vuông góc với (R).
Theo nhận xét trang 46 thì a' có nằm trong các mặt phẳng (P), (Q).
b) Vì a' có nằm trong các mặt phẳng (P), (Q) nên a’ là giao tuyến của hai mặt phẳng (P), (Q) do đó a trùng a' (do a cũng là giao tuyến của hai mặt phẳng (P), (Q)).
c) a vuông góc với (R) do a trùng a’ và a’ vuông góc với (R).
Video hướng dẫn giải
Với giả thiết như ở Ví dụ 3, chứng minh rằng:
a) Các mặt phẳng (AB'C'D') và (ABCD) cùng vuông góc với (SAC);
b) Giao tuyển của hai mặt phẳng (AB'C'D') và (ABCD) là đường thẳng đi qua A, nằm trong mặt phẳng (ABCD) và vuông góc với AC.
Phương pháp giải:
Nếu hai mặt phẳng cắt nhau và cùng vuông góc với một mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba đó.
Lời giải chi tiết:

a) Từ ví dụ 3b ta có AB’, AC’ cùng đi qua A và vuông góc với SC
\( \Rightarrow SC \bot \left( {AB'C'D'} \right),SC \subset \left( {SAC} \right) \Rightarrow \left( {AB'C'D'} \right) \bot \left( {SAC} \right)\)
Ta có \(SA \bot \left( {ABCD} \right),SA \subset \left( {SAC} \right) \Rightarrow \left( {ABCD} \right) \bot \left( {SAC} \right)\)
Do đó các mặt phẳng (AB'C'D') và (ABCD) cùng vuông góc với (SAC).
b) Vì (AB'C'D') và (ABCD) cùng vuông góc với (SAC) nên giao tuyến của hai mặt phẳng (AB'C'D') và (ABCD) vuông góc với (SAC)
Vậy giao tuyển của hai mặt phẳng (AB'C'D') và (ABCD) là đường thẳng đi qua A, nằm trong mặt phẳng (ABCD) và vuông góc với AC.
Mục 3 trong SGK Toán 11 tập 2 - Kết Nối Tri Thức thường xoay quanh các chủ đề về đạo hàm của hàm số, bao gồm các quy tắc tính đạo hàm, đạo hàm của các hàm số cơ bản và ứng dụng của đạo hàm trong việc giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số. Việc nắm vững kiến thức này là nền tảng quan trọng để học tốt các chương trình Toán học ở các lớp trên.
Dưới đây là lời giải chi tiết cho các bài tập trong Mục 3 trang 46, 47 SGK Toán 11 tập 2 - Kết Nối Tri Thức:
Đề bài: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
f'(x) = 3x2 + 4x - 5
Đề bài: Tính đạo hàm của hàm số g(x) = sin(x) + cos(x).
Lời giải:
g'(x) = cos(x) - sin(x)
Đề bài: Tìm đạo hàm của hàm số h(x) = ex + ln(x).
Lời giải:
h'(x) = ex + 1/x
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể giải thành công các bài tập trong Mục 3 trang 46, 47 SGK Toán 11 tập 2 - Kết Nối Tri Thức. Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn để được hỗ trợ.
| Hàm số | Đạo hàm |
|---|---|
| f(x) = xn | f'(x) = nxn-1 |
| f(x) = sin(x) | f'(x) = cos(x) |
| f(x) = cos(x) | f'(x) = -sin(x) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập