Bài 9.2 thuộc chương trình Toán 11 tập 2, sách Kết nối tri thức, tập trung vào việc ôn tập về đường thẳng và mặt phẳng trong không gian. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán liên quan đến quan hệ song song, vuông góc giữa đường thẳng và mặt phẳng.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Sử dụng định nghĩa, tìm đạo hàm của các hàm số sau:
Đề bài
Sử dụng định nghĩa, tìm đạo hàm của các hàm số sau:
a) \(y = k{x^2} + c\) (với k, c là các hằng số);
b) \(y = {x^3}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Hàm số \(y = f\left( x \right)\) được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm \(f'\left( x \right)\) tại mọi điểm x thuộc khoảng đó, kí hiệu là \(y' = f'\left( x \right)\)
Lời giải chi tiết
a) Với \({x_0}\) bất kì, ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{k{x^2} + c - \left( {kx_0^2 + c} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{k\left( {{x^2} - x_0^2} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{k\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left[ {k\left( {x + {x_0}} \right)} \right] = 2k{x_0}\)
Vậy hàm số \(y = k{x^2} + c\) có đạo hàm là hàm số \(y' = 2kx\)
b) Với \({x_0}\) bất kì, ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - x_0^3}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x{x_0} + x_0^2} \right) = 3x_0^2\)
Vậy hàm số \(y = {x^3}\) có đạo hàm là hàm số \(y' = 3{x^2}\)
Bài 9.2 trang 86 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đường thẳng và mặt phẳng trong không gian. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 9.2 yêu cầu học sinh chứng minh một số quan hệ về vị trí tương đối giữa đường thẳng và mặt phẳng, hoặc giữa hai mặt phẳng. Thông thường, bài tập sẽ cho trước một số thông tin về các yếu tố hình học, và yêu cầu học sinh sử dụng các định lý, tính chất đã học để suy luận và chứng minh.
(Ở đây sẽ là lời giải chi tiết của bài tập 9.2, bao gồm các bước giải, giải thích rõ ràng và sử dụng các ký hiệu toán học chính xác. Ví dụ:)
Giả sử bài tập yêu cầu chứng minh đường thẳng d song song với mặt phẳng (P). Ta có thể sử dụng định lý: Một đường thẳng song song với một mặt phẳng nếu và chỉ nếu nó song song với một đường thẳng nằm trong mặt phẳng đó.
Ngoài bài 9.2, học sinh có thể gặp các bài tập tương tự như:
Để giải các bài tập về đường thẳng và mặt phẳng hiệu quả, học sinh nên:
Học sinh có thể tham khảo thêm các tài liệu sau để ôn tập kiến thức:
| Công thức | Mô tả |
|---|---|
| Đường thẳng song song mặt phẳng | d // (P) ⇔ d // d' với d' ⊂ (P) |
| Đường thẳng vuông góc mặt phẳng | d ⊥ (P) ⇔ d ⊥ mọi đường thẳng nằm trong (P) |
Kết luận: Bài 9.2 trang 86 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng giải toán về đường thẳng và mặt phẳng trong không gian. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ nắm vững kiến thức và giải quyết bài tập một cách hiệu quả.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập