Bài 5.17 thuộc chương 1: Hàm số lượng giác và đồ thị của chương trình Toán 11 Tập 1 - Kết Nối Tri Thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số lượng giác, đặc biệt là hàm cosin, để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập.
Một bảng giá cước taxi được cho như sau:a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển b) Xét tính liên tục của hàm số ở câu a.
Đề bài
Một bảng giá cước taxi được cho như sau:
Giá mở cửa (0.5 km đầu) | Giá cước các km tiếp theo đến 30 km | Giá cước từ km thứ 31 |
10 000 đồng | 13 500 đồng | 11 000 đồng |
a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển
b) Xét tính liên tục của hàm số ở câu a.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a, Dựa vào đề bài để viết công thức hàm số.
b, Hàm số \(f\left( x \right)\) liên tục trên khoảng \(\left( {a,b} \right)\) nếu nó liên tục tại mọi điểm thuộc khoảng này
Hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a,b} \right]\) nếu nó liên tục trên khoảng \(\left( {a,b} \right)\) và
\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right),\;\) \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\)
Lời giải chi tiết
Gọi x là số km quãng đường hành khách di chuyển.
a) \(\begin{array}{l}f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{10\;000x\;,\;0 < x \le 0.5}\\{10000 + 13\;500\left( {x - 0.5} \right)\;,0.5 < x \le 30}\\{10000 + 13500.29,5 + 11\;000\left( {x - 30} \right),x > 30}\end{array}} \right.\\f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{10\;000\;,\;0 < x \le 0.5}\\{135000x + 3250,0.5 < x \le 30}\\{11000x + 78250,x > 30}\end{array}} \right.\end{array}\)
b, Với \(0 < x \le 0,5\)thì \(y = 10000\) là hàm hằng nên nó liên tục trên \((0;0,5)\)
Với \(0,5 < x < 30\) thì \(y = 13500x + 3250\) là hàm đa thức nên nó liên tục trên \((0,5;30)\)
Với \(0,5 < x < 30\) thì \(y = 11000x + 78250\) là hàm đa thức nên nó liên tục trên \((30; + \infty )\)
Xét tính liên tục của hàm số tại \(x = 0,5,x = 30\).
+Tại \(x = 0,5\) ta có \(f(0,5) = 10000\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0,{5^ - }} f(x) = \mathop {\lim }\limits_{x \to 0,{5^ - }} 10000 = 10000\\\mathop {\lim }\limits_{x \to 0,{5^ + }} f(x) = \mathop {\lim }\limits_{x \to 0,{5^ + }} (13500x + 3250) = 13500.0,5 + 3250 = 10000\\\mathop {\lim }\limits_{x \to 0,{5^ - }} f(x) = \mathop {\lim }\limits_{x \to 0,{5^ + }} f(x) = \mathop {\lim }\limits_{x \to 0,5} f(x) = f(0,5)\end{array}\)
Do đó, hàm số liên tục tại\(x = 0,5\).
Tại \(x = 30\) ta có \(f(30) = 13500.30 + 3250\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {{30}^ + }} f(x) = \mathop {\lim }\limits_{x \to {{30}^ + }} (11000x + 78250) = 11000.30 + 78250 = 408250\\\mathop {\lim }\limits_{x \to {{30}^ - }} f(x) = \mathop {\lim }\limits_{x \to {{30}^ - }} (13500x + 3250) = 13500.30 + 3250 = 408250\\\mathop {\lim }\limits_{x \to {{30}^ - }} f(x) = \mathop {\lim }\limits_{x \to {{30}^ + }} f(x) = \mathop {\lim }\limits_{x \to 30} f(x) = f(30)\end{array}\)
Do đó, hàm số liên tục tại \(x = 30\).
Vậy hàm số liên tục trên \(\mathbb{R}\).
Bài 5.17 trang 122 SGK Toán 11 Tập 1 - Kết Nối Tri Thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số lượng giác và ứng dụng vào giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
(Giả sử nội dung bài tập là: Một người đứng ở vị trí A cách chân cột điện 10m, nhìn lên đỉnh cột điện với góc nâng 60°. Biết cột điện thẳng đứng, hãy tính chiều cao của cột điện.)
Gọi h là chiều cao của cột điện. Ta có:
Xét tam giác vuông ABC (với C là đỉnh cột điện), ta có:
tan(∠BAC) = BC / AB
tan(60°) = h / 10
h = 10 * tan(60°)
h = 10 * √3 ≈ 17.32m
Vậy chiều cao của cột điện là khoảng 17.32m.
Để rèn luyện thêm kỹ năng giải bài tập về hàm số lượng giác, bạn có thể tham khảo các bài tập tương tự sau:
Khi giải bài tập về hàm số lượng giác, bạn cần lưu ý:
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn giải bài tập này, các em học sinh sẽ hiểu rõ hơn về hàm số lượng giác và có thể tự tin giải quyết các bài tập tương tự. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập