Bài 9.25 thuộc chương trình Toán 11 tập 2, sách Kết nối tri thức, tập trung vào việc ôn tập chương 4: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các loại hàm số, cách xác định tính đơn điệu, cực trị và vẽ đồ thị hàm số để giải quyết các bài toán cụ thể.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Tính đạo hàm của các hàm số sau:
Đề bài
Tính đạo hàm của các hàm số sau:
a) \(y = {\left( {\frac{{2x - 1}}{{x + 2}}} \right)^5}\)
b) \(y = \frac{{2x}}{{{x^2} + 1}}\);
c) \(y = {e^x}{\sin ^2}x\);
d) \(y = \log (x + \sqrt x )\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc kết hợp với các công thức tính đạo hàm
Lời giải chi tiết
a) \(y' = 5{\left( {\frac{{2x - 1}}{{x + 2}}} \right)^4}{\left( {\frac{{2x - 1}}{{x + 2}}} \right)^,} = 5{\left( {\frac{{2x - 1}}{{x + 2}}} \right)^4}.\frac{{2\left( {x + 2} \right) - \left( {2x - 1} \right)}}{{{{\left( {x + 2} \right)}^2}}}\\ = 5{\left( {\frac{{2x - 1}}{{x + 2}}} \right)^4}.\frac{5}{{{{\left( {x + 2} \right)}^2}}} = \frac{{25{{\left( {2x - 1} \right)}^4}}}{{{{\left( {x + 2} \right)}^6}}}\)
b) \(y' = \frac{{\left( {2x} \right)'\left( {{x^2} + 1} \right) - 2x\left( {{x^2} + 1} \right)'}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \frac{{2{x^2} + 2 - 4{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \frac{{ - 2{x^2} + 2}}{{{{\left( {{x^2} + 1} \right)}^2}}}\);
c) \(y' = \left( {{e^x}} \right)'{\sin ^2}x + {e^x}\left( {{{\sin }^2}x} \right)' = {e^x}{\sin ^2}x + {e^x}.2\sin x.\cos x = {e^x}{\sin ^2}x + {e^x}\sin 2x\);
d) \(y' = {\left[ {\log \left( {x + \sqrt x } \right)} \right]^,} = \frac{{\left( {x + \sqrt x } \right)'}}{{\left( {x + \sqrt x } \right)\ln 10}} = \frac{{1 + \frac{1}{{2\sqrt x }}}}{{\left( {x + \sqrt x } \right)\ln 10}} = \frac{{2\sqrt x + 1}}{{2\sqrt x \left( {x + \sqrt x } \right)\ln 10}}\)
Bài 9.25 trang 97 SGK Toán 11 tập 2 Kết nối tri thức là một bài tập quan trọng trong chương trình ôn tập chương 4 về hàm số và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán liên quan đến việc xác định tính đơn điệu, cực trị, và vẽ đồ thị của hàm số.
Thông thường, bài 9.25 sẽ bao gồm các dạng bài tập sau:
Để giải quyết bài tập 9.25 một cách hiệu quả, học sinh cần nắm vững các bước sau:
Bài toán: Xét hàm số y = x3 - 3x2 + 2. Tìm khoảng đơn điệu và cực trị của hàm số.
Giải:
Khi giải bài tập về hàm số, học sinh cần chú ý:
tusach.vn hy vọng với lời giải chi tiết và phương pháp giải bài tập 9.25 trang 97 SGK Toán 11 tập 2 Kết nối tri thức này, các bạn học sinh sẽ tự tin hơn trong việc học tập và ôn luyện môn Toán.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập