Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 3 trang 83, 84 sách giáo khoa Toán 11 tập 2 chương trình Kết nối tri thức. Bài viết này sẽ giúp các em học sinh hiểu rõ các khái niệm, định lý và phương pháp giải bài tập liên quan.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ quá trình học tập của các em.
Tính đạo hàm (f'left( {{x_0}} right)) tại điểm ({x_0}) bất kì trong các trường hợp sau:
Video hướng dẫn giải
Tính đạo hàm \(f'\left( {{x_0}} \right)\) tại điểm \({x_0}\) bất kì trong các trường hợp sau:
a) \(f\left( x \right) = c\) (c là hằng số);
b) \(f\left( x \right) = x.\)
Phương pháp giải:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)
Lời giải chi tiết:
a) \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{c - c}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 0 = 0\)
b) \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)
Video hướng dẫn giải
Tính đạo hàm của các hàm số sau:
a) \(y = {x^2} + 1;\)
b) \(y = kx + c\) (với k, c là các hằng số).
Phương pháp giải:
Hàm số \(y = f\left( x \right)\) được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm \(f'\left( x \right)\) tại mọi điểm x thuộc khoảng đó, kí hiệu là \(y' = f'\left( x \right)\)
Lời giải chi tiết:
a) Với \({x_0}\) bất kì, ta có:
\(\begin{array}{c}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} + 1 - \left( {x_0^2 + 1} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + {x_0}} \right) = 2{x_0}\end{array}\)
Vậy hàm số \(y = {x^2} + 1\) có đạo hàm là hàm số \(y' = 2x\)
b) Với \({x_0}\) bất kì, ta có:
\(\begin{array}{c}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{kx + c - \left( {k{x_0} + c} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{kx - k{x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{k\left( {x - {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} k = k\end{array}\)
Vậy hàm số \(y = kx + c\) (với k, c là các hằng số) có đạo hàm là hàm số \(y' = k\)
Mục 3 trang 83, 84 SGK Toán 11 tập 2 - Kết nối tri thức tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Đây là một phần quan trọng trong chương trình Toán 11, đòi hỏi học sinh phải nắm vững các kiến thức về hàm số lượng giác, đồ thị hàm số lượng giác và các ứng dụng của chúng.
Các bài tập trong mục này thường yêu cầu học sinh:
Để giải các bài tập trong mục này một cách hiệu quả, học sinh cần:
Đề bài: Tìm tập xác định của hàm số y = tan(2x + π/3).
Lời giải:
Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ (k ∈ Z).
Suy ra 2x ≠ π/2 + kπ - π/3 = π/6 + kπ (k ∈ Z).
Vậy x ≠ π/12 + kπ/2 (k ∈ Z).
Tập xác định của hàm số là D = {x ∈ R | x ≠ π/12 + kπ/2, k ∈ Z}.
Học Toán 11 đòi hỏi sự kiên trì và luyện tập thường xuyên. Hãy dành thời gian ôn tập lý thuyết, giải bài tập và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn. Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
| Chương | Bài | Nội dung |
|---|---|---|
| 3 | 1 | Hàm số lượng giác |
| 3 | 2 | Đồ thị hàm số lượng giác |
| 3 | 3 | Phương trình lượng giác cơ bản |
| Nguồn: Sách giáo khoa Toán 11 tập 2 - Kết nối tri thức | ||
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập