1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 4.45 trang 103 SGK Toán 11 tập 1 - Kết nối tri thức

Bài 4.45 trang 103 SGK Toán 11 tập 1 - Kết nối tri thức

Bài 4.45 trang 103 SGK Toán 11 Tập 1 - Kết Nối Tri Thức

Bài 4.45 thuộc chương trình Toán 11 Tập 1, sách Kết Nối Tri Thức, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho hình hộp ABCD.A’B’C’D‘. Gọi M, N lần lượt là trung điểm của các cạnh AD, A’B‘. Chứng minh rằng: a) BD // B’D‘, (A’BD) // (CB’D’) và MN // (BDD’B‘) b) Đường thẳng AC‘ đi qua trọng tâm G của tam giác A‘BD

Đề bài

Cho hình hộp ABCD.A’B’C’D‘. Gọi M, N lần lượt là trung điểm của các cạnh AD, A’B‘. Chứng minh rằng:

a) BD // B’D‘, (A’BD) // (CB’D’)MN // (BDD’B‘).

b) Đường thẳng AC‘ đi qua trọng tâm G của tam giác A‘BD.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 4.45 trang 103 SGK Toán 11 tập 1 - Kết nối tri thức 1

Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường nằm trong (P) thì a song song với (P).

Lời giải chi tiết

Bài 4.45 trang 103 SGK Toán 11 tập 1 - Kết nối tri thức 2

a) Ta có: (ABCD) // (A’B’C’D’)

\(\left( {B'D'DB} \right) \cap \left( {A'B'C'D'} \right) = B'D',\)

\(\left( {B'D'DB} \right) \cap \left( {ABCD} \right) = BD\).

Suy ra B'D' // DB.

Xét (A'BD) và (CB'D') có BD // B'D', A'B // CD'.

Suy ra (A'BD) //(CB'D').

Xét tứ giác B'NMO ta có: B'N = MO, B'N // MO.

Suy ra B'NMO là hình bình hành.

Suy ra B'O // MN hay MN // (BDD'B').

b) Xét tứ giác A'C'OA ta có: A'C' // AO, A'C' = 2AO

Suy ra A'G =2GO.

O là trung điểm BD.

Suy ra G là trọng tâm tam giác A'BD.

Như vậy AC' đi qua trọng tâm G của tam giác A'BD.

Bài 4.45 Trang 103 SGK Toán 11 Tập 1 - Kết Nối Tri Thức: Giải Chi Tiết và Hướng Dẫn

Bài 4.45 trang 103 SGK Toán 11 Tập 1 Kết Nối Tri Thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập:

Bài tập yêu cầu tìm cực trị của hàm số. Để giải bài tập này, chúng ta cần thực hiện các bước sau:

  1. Tính đạo hàm cấp một (f'(x)) của hàm số.
  2. Tìm các điểm dừng bằng cách giải phương trình f'(x) = 0.
  3. Lập bảng xét dấu f'(x) để xác định khoảng đồng biến, nghịch biến của hàm số.
  4. Kết luận về cực đại, cực tiểu dựa vào bảng xét dấu.

Lời giải chi tiết:

Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2 (ví dụ minh họa). Chúng ta sẽ áp dụng các bước trên để giải bài tập.

  1. Tính đạo hàm cấp một: f'(x) = 3x2 - 6x
  2. Tìm điểm dừng: 3x2 - 6x = 0 => 3x(x - 2) = 0 => x = 0 hoặc x = 2
  3. Lập bảng xét dấu f'(x):
    x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  4. Kết luận:
    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý quan trọng:

Khi giải bài tập về cực trị, cần chú ý:

  • Kiểm tra kỹ điều kiện xác định của hàm số.
  • Đảm bảo tính chính xác của các phép tính đạo hàm.
  • Phân tích kỹ bảng xét dấu để đưa ra kết luận đúng đắn.

Bài tập tương tự:

Để rèn luyện thêm kỹ năng giải bài tập về cực trị, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 11 Tập 1 Kết Nối Tri Thức hoặc trên các trang web học tập trực tuyến.

Tusach.vn – Nguồn tài liệu học tập Toán 11 uy tín:

Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, đáp án chính xác và các bài giảng chất lượng cho học sinh Toán 11. Chúng tôi luôn cập nhật nội dung mới nhất và hỗ trợ học sinh học tập hiệu quả.

Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh có thể tự tin giải Bài 4.45 trang 103 SGK Toán 11 Tập 1 Kết Nối Tri Thức và đạt kết quả tốt trong môn Toán.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN