Bài 6.22 thuộc chương trình Toán 11 Tập 2, sách Kết Nối Tri Thức, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế, giúp củng cố và nâng cao hiểu biết về đạo hàm.
Giải các bất phương trình sau:
Đề bài
Giải các bất phương trình sau:
a) \(0,{1^{2 - x}} > 0,{1^{4 + 2x}};\)
b) \({2.5^{2x + 1}} \le 3;\)
c) \({\log _3}\left( {x + 7} \right) \ge - 1;\)
d) \({\log _{0,5}}\left( {x + 7} \right) \ge {\log _{0,5}}\left( {2x - 1} \right).\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Tìm điều kiện cho phương trình
- Giải phương trình bằng định nghĩa hàm số lôgarit hoặc đưa 2 vế về cùng cơ số kết hợp biến đổi sử dụng công thức lôgarit.
Lời giải chi tiết
a) \(0,{1^{2 - x}} > 0,{1^{4 + 2x}}\)
\( \Leftrightarrow 2 - x < 4 + 2x \) (vì 0 < 0,1 < 1)
\(\Leftrightarrow 3x > - 2 \Leftrightarrow x > \frac{{ - 2}}{3}\)
b) \({2.5^{2x + 1}} \le 3\)
\(\begin{array}{l} \Leftrightarrow {5^{2x + 1}} \le \frac{3}{2} \Leftrightarrow 2x + 1 \le {\log _5}\frac{3}{2} \Leftrightarrow 2x \le {\log _5}\frac{3}{2} - 1\\ \Leftrightarrow x \le \frac{1}{2}\left( {{{\log }_5}\frac{3}{2} - 1} \right) = \frac{1}{2}.{\log _5}\frac{3}{{10}} = {\log _5}\frac{{\sqrt {30} }}{{10}}\end{array}\)
c) \({\log _3}\left( {x + 7} \right) \ge - 1\) (ĐK: x > - 7)
\( \Leftrightarrow x + 7 \ge {3^{ - 1}} \Leftrightarrow x + 7 \ge \frac{1}{3} \Leftrightarrow x \ge \frac{{ - 20}}{3}\)
Kết hợp điều kiện ta có \(x \ge \frac{{ - 20}}{3}\)
d) \({\log _{0,5}}\left( {x + 7} \right) \ge {\log _{0,5}}\left( {2x - 1} \right)\) (ĐK: \(x > \frac{1}{2}\))
\(\Leftrightarrow x + 7 \le 2x - 1\) (vì 0 < 0,5 < 1)
\(\Leftrightarrow x \ge 8\)
Kết hợp điều kiện ta có \(x \ge 8\)
Bài 6.22 trang 24 SGK Toán 11 Tập 2 Kết Nối Tri Thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
(Giả sử nội dung bài tập là: Cho hàm số y = f(x). Tìm đạo hàm f'(x) và xác định khoảng đồng biến, nghịch biến của hàm số.)
Để tìm đạo hàm f'(x), ta sử dụng các quy tắc tính đạo hàm đã học. Ví dụ, nếu f(x) = x2 + 2x + 1, thì f'(x) = 2x + 2.
Để xác định khoảng đồng biến, nghịch biến, ta xét dấu của đạo hàm f'(x).
Ví dụ, nếu f'(x) = 2x + 2 > 0 khi x > -1, thì hàm số đồng biến trên khoảng (-1, +∞).
Ngoài bài 6.22, còn rất nhiều bài tập tương tự trong SGK Toán 11 Tập 2 Kết Nối Tri Thức. Dưới đây là một số dạng bài tập thường gặp:
Để giải tốt các bài tập về đạo hàm, bạn nên:
Ngoài SGK Toán 11 Tập 2 Kết Nối Tri Thức, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và hướng dẫn trên, bạn sẽ hiểu rõ hơn về Bài 6.22 trang 24 SGK Toán 11 Tập 2 Kết Nối Tri Thức và có thể tự tin giải các bài tập tương tự. Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập