Bài 6.6 trang 9 SGK Toán 11 Tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập.
Không sử dụng máy tính cầm tay, hãy so sánh:
Đề bài
Không sử dụng máy tính cầm tay, hãy so sánh:
a) \({5^{6\sqrt 3 }}\) và \({5^{3\sqrt 6 }};\)
b) \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}}\) và \(\sqrt 2 {.2^{\frac{2}{3}}}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Đưa về so sánh 2 lũy thừa cùng cơ số.
Lời giải chi tiết
a) \({5^{6\sqrt 3 }}\) và \({5^{3\sqrt 6 }};\)
Ta có \(6\sqrt 3 = 2.3\sqrt 3 ;3\sqrt 6 = 3.\sqrt {2.3} = \sqrt 2 .3\sqrt 3 \) mà \(2 > \sqrt 2 \Rightarrow 6\sqrt 3 > 3\sqrt 6 \)
Do đó \({5^{6\sqrt 3 }} > {5^{3\sqrt 6 }}.\)
b) \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}}\) và \(\sqrt 2 {.2^{\frac{2}{3}}}.\)
Ta có \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}} = {2^{\frac{4}{3}}};\sqrt 2 {.2^{\frac{2}{3}}} = {2^{\frac{1}{2}}}{.2^{\frac{2}{3}}} = {2^{\frac{1}{2} + \frac{2}{3}}} = {2^{\frac{7}{6}}}\) mà \(\frac{4}{3} = \frac{8}{6} > \frac{7}{6} \Rightarrow {2^{\frac{4}{3}}} > {2^{\frac{7}{6}}}\)
Do đó \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}} > \sqrt 2 {.2^{\frac{2}{3}}}.\)
Bài 6.6 trang 9 SGK Toán 11 Tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 6.6 yêu cầu tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1 tại một điểm cụ thể hoặc trên một khoảng xác định. Để giải bài tập này, học sinh cần nắm vững các quy tắc tính đạo hàm cơ bản, bao gồm:
Để tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1, ta áp dụng các quy tắc đạo hàm đã nêu ở trên:
f'(x) = (x3)' - 3(x2)' + 2(x)' - (1)'
f'(x) = 3x2 - 6x + 2 - 0
f'(x) = 3x2 - 6x + 2
Giả sử ta cần tính đạo hàm của hàm số tại điểm x = 1. Ta thay x = 1 vào công thức đạo hàm vừa tìm được:
f'(1) = 3(1)2 - 6(1) + 2 = 3 - 6 + 2 = -1
Khi giải bài tập về đạo hàm, học sinh cần chú ý:
Để rèn luyện kỹ năng giải bài tập về đạo hàm, học sinh có thể tham khảo các bài tập tương tự sau:
Bài 6.6 trang 9 SGK Toán 11 Tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các quy tắc đạo hàm và áp dụng chúng một cách linh hoạt, học sinh có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. tusach.vn hy vọng rằng lời giải chi tiết và hướng dẫn trên sẽ giúp ích cho các em trong quá trình học tập.
| Hàm số | Đạo hàm |
|---|---|
| f(x) = x3 | f'(x) = 3x2 |
| f(x) = x2 | f'(x) = 2x |
| f(x) = x | f'(x) = 1 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập