1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 7.11 trang 42 SGK Toán 11 tập 2 – Kết nối tri thức

Bài 7.11 trang 42 SGK Toán 11 tập 2 – Kết nối tri thức

Bài 7.11 trang 42 SGK Toán 11 Tập 2 – Kết Nối Tri Thức

Bài 7.11 thuộc chương trình Toán 11 Tập 2, Kết Nối Tri Thức, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các vấn đề cụ thể.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA ( bot ) (ABCD) và (SA = asqrt 2 .)

Đề bài

Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA \( \bot \) (ABCD) và \(SA = a\sqrt 2 .\)

a) Tính góc giữa SC và mặt phẳng (ABCD).

b) Tính góc giữa BD và mặt phẳng (SAC).

c) Tìm hình chiếu của SB trên mặt phẳng (SAC).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 7.11 trang 42 SGK Toán 11 tập 2 – Kết nối tri thức 1

- Góc giữa đường thẳng a với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên (P).

- Xác định hình chiếu tại 1 điểm

Lời giải chi tiết

Bài 7.11 trang 42 SGK Toán 11 tập 2 – Kết nối tri thức 2

a) A là hình chiếu của S trên (ABCD) \(\left( {SA \bot \left( {ABCD} \right)} \right)\)

C là hình chiếu của C trên (ABCD)

\( \Rightarrow \) AC là hình chiếu của SC trên (ABCD)

\( \Rightarrow \) \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)

Xét tam giác SAC vuông tại A có

\(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1 \Rightarrow \widehat {SCA} = {45^0}\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = {45^0}\)

b) \(\left. \begin{array}{l}AC \bot BD\left( {hv\,\,ABCD} \right)\\SA \bot BD\left( {SA \bot \left( {ABCD} \right)} \right)\\AC \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BD \bot \left( {SAC} \right) \Rightarrow \left( {BD,\left( {SAC} \right)} \right) = {90^0}\)

c) Gọi \(AC \cap BD = \left\{ O \right\}\) mà \(BD \bot \left( {SAC} \right)\)

\( \Rightarrow \) O là hình chiếu của B trên (SAC)

S là hình chiếu của S trên (SAC)

\( \Rightarrow \) SO là hình chiếu của SB trên (SAC).

Bài 7.11 Trang 42 SGK Toán 11 Tập 2 – Kết Nối Tri Thức: Giải Chi Tiết và Hướng Dẫn

Bài 7.11 trang 42 SGK Toán 11 Tập 2 – Kết Nối Tri Thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập:

(Giả sử nội dung bài tập là: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)

Lời giải:

  1. Bước 1: Tìm tập xác định của hàm số.
  2. Hàm số y = f(x) = x3 - 3x2 + 2 có tập xác định là D = ℝ.

  3. Bước 2: Tính đạo hàm cấp nhất f'(x).
  4. f'(x) = 3x2 - 6x

  5. Bước 3: Tìm các điểm dừng (điểm mà f'(x) = 0 hoặc không xác định).
  6. 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2

  7. Bước 4: Lập bảng xét dấu f'(x).
  8. x-∞02+∞
    f'(x)+-+
  9. Bước 5: Kết luận về các điểm cực trị.
    • Tại x = 0, f'(x) đổi dấu từ dương sang âm, nên hàm số đạt cực đại tại x = 0. Giá trị cực đại là f(0) = 2.
    • Tại x = 2, f'(x) đổi dấu từ âm sang dương, nên hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là f(2) = -2.

Lưu ý quan trọng:

Khi giải các bài toán về cực trị, cần đảm bảo rằng các điểm dừng thuộc tập xác định của hàm số. Ngoài ra, việc lập bảng xét dấu đạo hàm cấp nhất là bước quan trọng để xác định chính xác loại cực trị (cực đại hay cực tiểu).

Mở rộng kiến thức:

Để hiểu sâu hơn về đạo hàm và ứng dụng của nó, bạn có thể tham khảo thêm các bài học và tài liệu liên quan đến:

  • Đạo hàm của hàm số
  • Ứng dụng của đạo hàm để khảo sát hàm số
  • Bài tập trắc nghiệm về đạo hàm

tusach.vn hy vọng với lời giải chi tiết này, bạn sẽ hiểu rõ hơn về cách giải Bài 7.11 trang 42 SGK Toán 11 Tập 2 – Kết Nối Tri Thức. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN