Chào các em học sinh! Tusach.vn xin giới thiệu bài giải chi tiết bài 9.36 trang 64 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, lời giải dễ hiểu và phương pháp giải bài tập hiệu quả.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, giúp các em học tập tốt hơn.
Tiếp tuyến của đồ thị hàm số \(y = - {x^3} + 6{x^2} - 9x + 1\) với hệ số góc lớn nhất có phương trình là
Đề bài
Tiếp tuyến của đồ thị hàm số \(y = - {x^3} + 6{x^2} - 9x + 1\) với hệ số góc lớn nhất có phương trình là
A. \(y = 3x - 5\).
B. \(y = 3x - 7\).
C. \(y = 3x + 5\).
D. \(y = 3x + 7\).
Phương pháp giải - Xem chi tiết
Hệ số góc tiếp tuyến của đồ thị hàm số có dạng \(k = y' = - 3{x^2} + 12x - 9\).
Khi đó ta có:\(k = - 3{x^2} + 12x - 9\)
Tìm \({k_{{\rm{max}}}}\) đạt được khi \(x = {x_0}\) và \(y = y\left( {{x_0}} \right)\).
Phương trình tiếp tuyến cần tìm là: \(y = {k_{{\rm{max}}}}\left( {x - {x_0}} \right) + {y_0}\)
Lời giải chi tiết
Hệ số góc tiếp tuyến của đồ thị hàm số có dạng \(k = y' = - 3{x^2} + 12x - 9\).
Khi đó ta có:\(k = - 3{x^2} + 12x - 9 = - 3{(x - 2)^2} + 3 \le 3\)
Dấu "=" đạt được, \({k_{{\rm{max}}}} = 3\), khi \(x = 2\) và \(y = - 1\).
Phương trình tiếp tuyến cần tìm là: \(y = 3\left( {x - 2} \right) - 1 \Leftrightarrow y = 3x - 7\)
Bài 9.36 trang 64 sách bài tập Toán 11 Kết nối tri thức là một bài tập thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng, khoảng cách từ điểm đến mặt phẳng, và các bài toán ứng dụng thực tế.
Thông thường, bài 9.36 sẽ đưa ra một hệ tọa độ trong không gian Oxyz, cùng với các điểm, đường thẳng và mặt phẳng được xác định bởi các phương trình cụ thể. Yêu cầu của bài tập có thể là:
Để giải bài 9.36 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Bài toán: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa đường thẳng d và mặt phẳng (P).
Giải:
Vectơ chỉ phương của đường thẳng d là a = (1, -1, 2). Vectơ pháp tuyến của mặt phẳng (P) là n = (2, -1, 1).
Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 2 + 1 + 2 = 5 ≠ 0. Do đó, đường thẳng d và mặt phẳng (P) cắt nhau.
Tusach.vn luôn cập nhật và cung cấp các bài giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 11 Kết nối tri thức. Hãy truy cập Tusach.vn để học tập và ôn luyện hiệu quả!
| Chương | Bài | Liên kết |
|---|---|---|
| 9 | 9.1 | Giải bài 9.1 trang 60 |
| 9 | 9.2 | Giải bài 9.2 trang 61 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập