Chào mừng các em học sinh đến với lời giải chi tiết bài 6.5 trang 6 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu nhất.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Cho a là số thực đương. Rút gọn các biểu thức sau:
Đề bài
Cho a là số thực đương. Rút gọn các biểu thức sau:
a) \({\left( {{a^{\sqrt 6 }}} \right)^{\sqrt {24} }}\)
b)\({a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\);
c) \({a^{ - \sqrt 3 }}:{a^{{{(\sqrt 3 - 1)}^2}}}\)
d) \(\sqrt[3]{a} \cdot \sqrt[4]{a} \cdot \sqrt[{12}]{{{a^5}}}\)
Phương pháp giải - Xem chi tiết
Áp dụng tính chất của lũy thừa với số mũ thực
Với \(a > 0,b > 0\) và \(m,n\) là các số thực, ta có:
\({a^m}.{a^n} = {a^{m + n}}\);
\(\frac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\);
\({\left( {{a^m}} \right)^n} = {a^{mn}};\)
\({\left( {ab} \right)^m} = {a^m}{b^m}\);
\({\left( {\frac{a}{b}} \right)^m} = \frac{{{a^m}}}{{{b^m}}}\)
Cho số thực dương \(a\), \(m\) là một số nguyên và \(n\) là số nguyên dương. \({a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\).
Giả sử \(n,k\) là các số nguyên dương, \(m\) là số nguyên. Khi đó:
\(\sqrt[n]{a}.\sqrt[n]{b} = \sqrt[n]{{ab}}\);
\(\frac{{\sqrt[n]{a}}}{{\sqrt[n]{b}}} = \sqrt[n]{{\frac{a}{b}}}\);
\({\left( {\sqrt[n]{a}} \right)^m} = \sqrt[n]{{{a^m}}}\);
Lời giải chi tiết
a)\({\left( {{a^{\sqrt 6 }}} \right)^{\sqrt {24} }} = {a^{\sqrt {6 \cdot 24} }} = {a^{12}}\).
b)\({a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }} \cdot {a^{1 - \sqrt 2 }} = a\).
c)\({a^{ - \sqrt 3 }}:{a^{{{(\sqrt 3 - 1)}^2}}} = {a^{ - \sqrt 3 }}:{a^{4 - 2\sqrt 3 }} = {a^{ - 4 + \sqrt 3 }}\).
d) \(\sqrt[3]{a} \cdot \sqrt[4]{a} \cdot \sqrt[{12}]{{{a^5}}} = {a^{\frac{1}{3}}} \cdot {a^{\frac{1}{4}}} \cdot {a^{\frac{5}{{12}}}} = a\)
Bài 6.5 trang 6 sách bài tập Toán 11 Kết nối tri thức thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các hàm lượng giác cơ bản (sin, cos, tan, cot) để giải quyết các bài toán liên quan đến việc tìm giá trị của hàm, chứng minh đẳng thức lượng giác, hoặc giải phương trình lượng giác.
Thông thường, bài 6.5 sẽ bao gồm các dạng bài tập sau:
Để giải quyết bài tập 6.5 trang 6 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Ví dụ minh họa (giả định):
Bài tập: Tính giá trị của biểu thức A = sin230° + cos230°
Lời giải:
Ta có: sin230° = (1/2)2 = 1/4 và cos230° = (√3/2)2 = 3/4
Do đó, A = 1/4 + 3/4 = 1
Để hiểu rõ hơn về chương trình học Toán 11 Kết nối tri thức, các em có thể tham khảo thêm:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em học sinh sẽ tự tin giải quyết bài tập 6.5 trang 6 SBT Toán 11 Kết nối tri thức một cách dễ dàng. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập