Chào các em học sinh! Tusach.vn xin giới thiệu đến các em lời giải chi tiết bài 3.25 trang 52 sách bài tập Toán 11 Kết nối tri thức. Bài tập này thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng giải quyết các bài toán liên quan đến đạo hàm.
Chúng tôi sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.
Trong các mẫu số liệu cho trong bài tập 3.23 và 3.24, ta có thể tìm mốt cho mẫu số liệu nào?
Đề bài
Trong các mẫu số liệu cho trong bài tập 3.23 và 3.24, ta có thể tìm mốt cho mẫu số liệu nào? Tìm mốt của mẫu số liệu đó và giải thích ý nghĩa của giá trị tìm được.
Phương pháp giải - Xem chi tiết
Ta có bảng số liệu ghép nhóm:

Để tính mốt của mẫu số liệu ghép nhóm ta thực hiện như sau:
Bước 1: Xác định nhóm có tần số lớn nhất (gọi là nhóm mốt), giả sử là nhóm j: \(\left[ {{a_j};{a_{j + 1}}} \right)\)
Bước 2: Mốt được xác định là: \({M_o} = {a_j} + \frac{{\left( {{m_j} - {m_{j - 1}}} \right)}}{{\left( {{m_j} - {m_{j - 1}}} \right) + \left( {{m_j} - {m_{j + 1}}} \right)}}.h\), trong đó h là độ rộng của nhóm và ta quy ước \({m_0} = {m_{k + 1}} = 0\).
Mốt của mẫu số liệu ghép nhóm xấp xỉ cho mốt của mẫu số liệu gốc, nó được dùng để đo xu thế trung tâm của số liệu.
Lời giải chi tiết
Các nhóm số liệu trong bài tập 3.23 không có độ dài bằng nhau nên người ta không định nghĩa mốt. Hiệu chỉnh mẫu số liệu bài 3.24 như sau, ta được nhóm chứa mốt là nhóm [3,5; 6,5), do đó mốt là
\({M_0} = 3,5\frac{{18 - 5}}{{(18 - 5) + (18 - 13)}}.3 \approx 5,76\).
Số học sinh đăng kí khoảng 5,67 nguyện vọng là nhiều nhất.
Bài 3.25 trang 52 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm của hàm số. Bài tập thường yêu cầu học sinh tính đạo hàm của các hàm số phức tạp, hoặc áp dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
Thông thường, bài tập 3.25 sẽ bao gồm các dạng bài sau:
Để giải quyết bài tập 3.25 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho bài 3.25 trang 52 sách bài tập Toán 11 Kết nối tri thức. (Lưu ý: Nội dung lời giải cụ thể sẽ phụ thuộc vào đề bài của bài 3.25.)
Ví dụ (giả định):
Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại và cực tiểu của hàm số.
Lời giải:
Để nắm vững kiến thức và kỹ năng giải bài tập về đạo hàm, các em nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Tusach.vn sẽ cung cấp thêm nhiều bài tập và lời giải chi tiết trong các bài viết tiếp theo.
Bài 3.25 trang 52 SBT Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp các em rèn luyện kỹ năng giải quyết các bài toán liên quan đến đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng mà Tusach.vn cung cấp, các em sẽ tự tin hơn trong việc học tập và làm bài tập Toán 11.
| Chủ đề | Nội dung |
|---|---|
| Đạo hàm | Quy tắc tính đạo hàm, đạo hàm của các hàm số cơ bản |
| Cực trị | Điều kiện cần và đủ để hàm số đạt cực trị |
| Khảo sát hàm số | Sử dụng đạo hàm để phân tích sự biến thiên của hàm số |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập