1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 6.33 trang 19 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 6.33 trang 19 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 6.33 trang 19 SBT Toán 11 - Kết nối tri thức

Chào các em học sinh! Tusach.vn xin giới thiệu đến các em lời giải chi tiết bài 6.33 trang 19 sách bài tập Toán 11 Kết nối tri thức. Bài tập này thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng giải quyết các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.

Chúng tôi sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.

Giải các bát phương trình mũ sau:

Đề bài

Giải các bát phương trình mũ sau:

a) \({2^{2x - 3}} > \frac{1}{4}\)

b) \({\left( {\frac{1}{2}} \right)^{{x^2}}} \ge {\left( {\frac{1}{2}} \right)^{5x - 6}}\);

c) \({25^x} \le {5^{4x - 3}}\);

d) \({9^x} - {3^x} - 6 \le 0\).

Phương pháp giải - Xem chi tiếtGiải bài 6.33 trang 19 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Bất phương trình mũ dạng cơ bản có dạng \({a^x} > b\) (hoặc \({a^x} \ge b,{a^x} < b,{a^x} \le b\)) với \(a > 0,a \ne 1.\)

Xét bất phương trình dạng \({a^x} > b\):

Nếu \(b \le 0\) thì tập nghiệm của bất phương trình là \(\mathbb{R}.\)

Nếu \(b > 0\) thì bất phương trình tương đương với \({a^x} > {a^{{{\log }_a}b}}.\)

+/ Với \(a > 1,\)nghiệm của bất phương trình là \(x > {\log _a}b\).

+/ Với \(0 < a < 1,\)nghiệm của bất phương trình là \(x < {\log _a}b.\)

Chú ý:

Các bất phương trình mũ cơ bản còn lại được giải tương tự.

Nếu \(a > 1\) thì \({a^u} > {a^v} \Leftrightarrow u > v.\)

Nếu \(0 < a < 1\) thì \({a^u} > {a^v} \Leftrightarrow u < v.\)

Giải bất phương trình bằng cách giải bất phương trình bậc hai

Lời giải chi tiết

a) \({2^{2x - 3}} > \frac{1}{4} \Leftrightarrow {2^{2x - 3}} > {2^{ - 2}} \Leftrightarrow 2x - 3 > - 2 \Leftrightarrow x > \frac{1}{2}\).

b) \({\left( {\frac{1}{2}} \right)^{{x^2}}} \ge {\left( {\frac{1}{2}} \right)^{5x - 6}} \Leftrightarrow {x^2} \le 5x - 6 \Leftrightarrow {x^2} - 5x + 6 \le 0 \Leftrightarrow 2 \le x \le 3\).

c) \({25^x} \le {5^{4x - 3}} \Leftrightarrow {5^{2x}} \le {5^{4x - 3}} \Leftrightarrow 2x \le 4x - 3 \Leftrightarrow x \ge \frac{3}{2}\).

d) \({9^x} - {3^x} - 6 \le 0 \Leftrightarrow {\left( {{3^x}} \right)^2} - {3^x} - 6 \le 0 \Leftrightarrow \)\( - 2 \le {3^x} \le 3 \Leftrightarrow x \le 1.{\rm{\;}}\)

Giải bài 6.33 trang 19 SBT Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết và dễ hiểu

Bài 6.33 trang 19 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm bậc nhất f'(x):
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm làm f'(x) = 0:
  4. 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Lập bảng xét dấu f'(x):
  6. x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  7. Kết luận:
    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý quan trọng:

Khi giải các bài toán về cực trị của hàm số, cần thực hiện đầy đủ các bước sau:

  • Tính đạo hàm bậc nhất f'(x).
  • Tìm các điểm làm f'(x) = 0.
  • Lập bảng xét dấu f'(x) để xác định khoảng đồng biến, nghịch biến của hàm số.
  • Kết luận về các điểm cực trị và giá trị cực trị.

Mở rộng kiến thức:

Ngoài việc tìm cực trị của hàm số, đạo hàm còn được ứng dụng rộng rãi trong nhiều lĩnh vực khác như:

  • Tính tốc độ thay đổi của một đại lượng.
  • Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một khoảng cho trước.
  • Giải các bài toán tối ưu hóa.

Tusach.vn hy vọng rằng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về cách giải bài 6.33 trang 19 sách bài tập Toán 11 Kết nối tri thức. Chúc các em học tập tốt!

Nếu các em có bất kỳ thắc mắc nào, đừng ngần ngại đặt câu hỏi trong phần bình luận bên dưới. Chúng tôi luôn sẵn sàng hỗ trợ các em.

Hãy truy cập tusach.vn để xem thêm nhiều bài giải Toán 11 và các môn học khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN