Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài 6.11 trang 10 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn học tập hiệu quả và đạt kết quả tốt nhất trong môn Toán.
Tính:
Đề bài
Tính:
a) \({\rm{lo}}{{\rm{g}}_2}\frac{1}{{64}}\)
b) \({\rm{log}}1000\);
c) \({\rm{lo}}{{\rm{g}}_5}1250 - {\rm{lo}}{{\rm{g}}_5}10\);
d) \({4^{{\rm{lo}}{{\rm{g}}_2}3}}\).
Phương pháp giải - Xem chi tiết
Áp dụng tính chất của lũy thừa với số mũ thực
Với \(a > 0,b > 0\) và \(m,n\) là các số thực, ta có:
\({a^m}.{a^n} = {a^{m + n}}\); \(\frac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\); \({\left( {{a^m}} \right)^n} = {a^{mn}};\)
\({\left( {ab} \right)^m} = {a^m}{b^m}\); \({\left( {\frac{a}{b}} \right)^m} = \frac{{{a^m}}}{{{b^m}}}\)
Với \(0 < a \ne 1,M > 0\) và \(\alpha \) là số thực tuỳ ý, ta có:
\({\log _a}1 = 0;{\log _a}a = 1;\)
\({a^{{{\log }_a}M}} = M;{\log _a}{a^\alpha } = \alpha \)
Lời giải chi tiết
a) \({\rm{lo}}{{\rm{g}}_2}\frac{1}{{64}} = {\rm{lo}}{{\rm{g}}_2}{2^{ - 6}} = - 6\).
b) \({\rm{log}}1000 = {\rm{log}}{10^3} = 3\).
c) \({\rm{lo}}{{\rm{g}}_5}1250 - {\rm{lo}}{{\rm{g}}_5}10 = {\rm{lo}}{{\rm{g}}_5}\frac{{1250}}{{10}} = {\rm{lo}}{{\rm{g}}_5}125 = {\rm{lo}}{{\rm{g}}_5}{5^3} = 3\)
d) \({4^{{\rm{lo}}{{\rm{g}}_2}3}} = {\left( {{2^{{\rm{lo}}{{\rm{g}}_2}3}}} \right)^2} = {3^2} = 9\)
Bài 6.11 trang 10 sách bài tập Toán 11 Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến phép biến hình affine. Để hiểu rõ hơn về cách giải bài toán này, chúng ta cần nắm vững các khái niệm cơ bản về phép biến hình affine, bao gồm:
Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ các yếu tố quan trọng. Thông thường, bài toán sẽ cung cấp các thông tin sau:
Để giải bài toán 6.11 trang 10, chúng ta thực hiện các bước sau:
Giả sử đề bài cho phép biến hình affine f(x, y) = (2x + y, x - y) và điểm A(1, 2). Để tìm ảnh của điểm A qua phép biến hình f, ta thực hiện như sau:
f(1, 2) = (2*1 + 2, 1 - 2) = (4, -1). Vậy ảnh của điểm A(1, 2) qua phép biến hình f là A'(4, -1).
Bài 6.11 trang 10 SBT Toán 11 Kết nối tri thức là một bài tập quan trọng giúp bạn củng cố kiến thức về phép biến hình affine. Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài toán này và đạt kết quả tốt nhất. Nếu bạn có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ.
| Khái niệm | Giải thích |
|---|---|
| Phép biến hình affine | Phép biến hình bảo toàn tính thẳng hàng và tỷ lệ của các đoạn thẳng. |
| Ma trận của phép biến hình affine | Một ma trận 2x2 biểu diễn phép biến hình affine. |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập