Chào mừng các em học sinh đến với lời giải chi tiết bài 7.51 trang 43 sách bài tập Toán 11 Kết nối tri thức. Bài tập này thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng giải quyết các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và \(SC = a\sqrt 2 \).
Đề bài
hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và \(SC = a\sqrt 2 \). Gọi H là trung điểm cạnh AB
a) Chứng minh rằng \(SH \bot (ABCD)\)
b) Tính theo \(a\) thể tích khối chóp \(S.ABCD\)
c) Tính theo \(a\) khoảng cách từ điểm A đến mặt phẳng \(\left( {SBD} \right)\)
Phương pháp giải - Xem chi tiết
Tính khoảng cách từ H đên (SBD), sau đó suy ra khoảng cách từ A đến (SBD)
Lời giải chi tiết

a) Ta có: \(SH = \frac{{a\sqrt 3 }}{2},HC = \frac{{a\sqrt 5 }}{2}\)
Suy ra \(S{H^2} + H{C^2} = S{C^2}\)
Do đó vuông tại H
Hay\(SH \bot HC\) lại có \(SH \bot AB\)
Nên \(SH \bot (ABCD)\)
b) ta có \(SH = \frac{{a\sqrt 3 }}{2},{S_{ABCD}} = {a^2}\)
Suy ra \({V_{S.ABCD}} = \frac{1}{3}.{S_{ABCD}}.SH = \frac{1}{3}.{a^2}.\frac{{a\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{6}\)
c) vì H là trung điểm của AB nên d(A, (SBD))=2.d(H,(SBD)). Kẻ HK vuông góc với BD tại K, HQ vuông góc với SK tại Q. Khi đó \(HQ \bot (SBD)\) suy ra d(H,(SBD))=HQ
ta tính được \(HK = \frac{{AC}}{4} = \frac{{a\sqrt 2 }}{4},SH = \frac{{a\sqrt 3 }}{4}\) mà tam giác SHK vuông tại H, đường cao HQ nên \(\frac{1}{{H{Q^2}}} = \frac{1}{{H{K^2}}} + \frac{1}{{H{S^2}}}\) suy ra \(HQ = \frac{{a\sqrt {21} }}{{24}}\), do đó d(A,(SBD))= \(HQ = \frac{{a\sqrt {21} }}{7}\)
Bài 7.51 yêu cầu chúng ta xét hàm số f(x) = x3 - 3x2 + 2 và thực hiện các yêu cầu sau:
Ta có: f(x) = x3 - 3x2 + 2
Suy ra: f'(x) = 3x2 - 6x
Ta có: 3x2 - 6x = 0
⇔ 3x(x - 2) = 0
⇔ x = 0 hoặc x = 2
Ta có bảng biến thiên sau:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | 0 | - | + |
| f(x) | 2 | -2 |
Dựa vào bảng biến thiên, ta thấy:
Vậy, bài 7.51 trang 43 SBT Toán 11 Kết nối tri thức đã được giải quyết hoàn chỉnh. Hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.
Để nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm, các em nên:
Tusach.vn hy vọng rằng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về bài tập và tự tin hơn trong quá trình học tập. Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập