Chào mừng các em học sinh đến với lời giải chi tiết bài 2.2 trang 33 Sách bài tập Toán 11 - Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu hơn về kiến thức và rèn luyện kỹ năng giải toán.
tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Xét tính tăng, giảm của mỗi dãy số sau:
Đề bài
Xét tính tăng, giảm của mỗi dãy số sau:
a) \({u_n} = {n^2} + n + 1;\)
b) \({u_n} = \frac{{2n + 5}}{{n + 2}};\)
c) \({u_n} = \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{n^2} + 1}}\).
Phương pháp giải - Xem chi tiết
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu \({u_{n + 1}} > {u_n}\) (hay \({u_{n + 1}} - {u_n} > 0\)) với mọi \(n \in \mathbb{N}*\)
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu \({u_{n + 1}} < {u_n}\) (hay \({u_{n + 1}} - {u_n} < 0\)) với mọi \(n \in \mathbb{N}*\)
Lời giải chi tiết
a) Ta có: \({u_{n + 1}} - {u_n} = {\left( {n + 1} \right)^2} + n + 1 + 1 - \left( {{n^2} + n + 1} \right) = 2n + 2 > 0\), \(\forall n \ge 1\) nên \(\left( {{u_n}} \right)\) là dãy số tăng.
b) Ta có: \({u_{n + 1}} - {u_n} = \frac{{2\left( {n + 1} \right) + 5}}{{n + 3}} - \frac{{2n + 5}}{{n + 2}} = \frac{{2n + 7}}{{n + 3}} - \frac{{2n + 5}}{{n + 2}}\).
\( = \frac{{\left( {2n + 7} \right)\left( {n + 2} \right) - \left( {2n + 5} \right)\left( {n + 3} \right)}}{{\left( {n + 2} \right)\left( {n + 3} \right)}} = \frac{{ - 1}}{{\left( {n + 2} \right)\left( {n + 3} \right)}} < 0\), \(\forall n \ge 1\).
Do đó, \(\left( {{u_n}} \right)\) là dãy số giảm.
c) Ta có: \({u_{n + 1}} - {u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{{\left( {n + 1} \right)}^2} + 1}} - \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{n^2} + 1}} = \frac{{{{\left( { - 1} \right)}^n}}}{{{{\left( {n + 1} \right)}^2} + 1}} + \frac{{{{\left( { - 1} \right)}^n}}}{{{n^2} + 1}}\)
\( = {\left( { - 1} \right)^n}\left( {\frac{1}{{{{\left( {n + 1} \right)}^2} + 1}} + \frac{1}{{{n^2} + 1}}} \right)\).
Ta thấy hiệu này âm hay dương phụ thuộc vào n chẵn hay n lẻ. Do đó, dãy số \(\left( {{u_n}} \right)\) không tăng, không giảm.
Bài 2.2 trang 33 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học môn Toán lớp 11, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh chứng minh đẳng thức vectơ, tìm tọa độ điểm, hoặc xác định mối quan hệ giữa các điểm dựa trên vectơ.
Để giải quyết bài 2.2 trang 33 một cách hiệu quả, chúng ta cần nắm vững các kiến thức sau:
Giả sử bài 2.2 yêu cầu chứng minh rằng với ba điểm A, B, C bất kỳ, ta có: AB + BC = AC. Dưới đây là hướng dẫn giải:
Ngoài việc chứng minh đẳng thức vectơ, bài 2.2 thường xuất hiện các dạng bài tập sau:
Để giải các bài tập về vectơ một cách nhanh chóng và chính xác, bạn nên:
Để học tốt môn Toán lớp 11, bạn có thể tham khảo các tài liệu sau:
Bài 2.2 trang 33 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng trong hình học. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập trên, các em sẽ tự tin chinh phục bài tập này và đạt kết quả tốt trong môn Toán.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập