1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 11 trang 68 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 11 trang 68 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 11 trang 68 Sách bài tập Toán 11 - Kết nối tri thức

Tusach.vn xin giới thiệu lời giải chi tiết bài 11 trang 68 SBT Toán 11 Kết nối tri thức. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.

Đạo hàm của hàm số \(y = {\rm{si}}{{\rm{n}}^2}2x + {e^{{x^2} - 1}}\) là

Đề bài

Đạo hàm của hàm số \(y = {\rm{si}}{{\rm{n}}^2}2x + {e^{{x^2} - 1}}\) là

A. \(y' = {\rm{sin}}4x + 2x{e^{{x^2} - 1}}\).

C. \(y' = 2{\rm{sin}}4x + 2x{e^{{x^2} - 1}}\).

B. \(y' = 2{\rm{sin}}2x + 2x{e^{{x^2} - 1}}\).

D. \(y' = 4{\rm{sin}}2x{\rm{cos}}2x + {e^{{x^2} - 1}}\).

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 68 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Áp dụng quy tắc tính đạo hàm và công thức nhân đôi

\({\left( {\sin u} \right)^\prime } = u'.\cos u\);\({\left( {{e^u}} \right)^\prime } = u'.{e^u}\)

\({\left( {{{\sin }^n}u} \right)^\prime } = nu'.\cos u.{\sin ^{n - 1}}u\)

\(\sin 2u = 2\sin u.\cos u\)

Lời giải chi tiết

\(y = {\rm{si}}{{\rm{n}}^2}2x + {e^{{x^2} - 1}} \Rightarrow y' = 2{\rm{sin}}2x{\left( {{\rm{sin}}2x} \right)^\prime } + {\left( {{x^2} - 1} \right)^\prime }{e^{{x^2} - 1}} = 2{\rm{sin}}2x.2c{\rm{os2x}} + 2x{e^{{x^2} - 1}} = 2\sin 4x + 2x{e^{{x^2} - 1}}\)

Chọn B

Giải bài 11 trang 68 Sách bài tập Toán 11 - Kết nối tri thức: Tổng quan và Phương pháp giải

Bài 11 trang 68 Sách bài tập Toán 11 Kết nối tri thức thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về hàm số, đồ thị hàm số và các phép biến đổi hàm số để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phân tích, suy luận và áp dụng các công thức, định lý đã học để tìm ra đáp án chính xác.

Nội dung chi tiết bài 11 trang 68 SBT Toán 11 - Kết nối tri thức

Bài 11 thường bao gồm các dạng bài tập sau:

  • Xác định tính đơn điệu của hàm số: Yêu cầu học sinh xác định khoảng đồng biến, nghịch biến của hàm số dựa vào đạo hàm.
  • Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: Sử dụng đạo hàm để tìm cực trị và so sánh các giá trị để xác định giá trị lớn nhất, nhỏ nhất.
  • Giải phương trình, bất phương trình chứa hàm số: Vận dụng các kiến thức về hàm số và các phép biến đổi tương đương để giải quyết.
  • Vẽ đồ thị hàm số: Xác định các điểm đặc biệt (điểm cực trị, điểm uốn, giao điểm với trục tọa độ) và vẽ đồ thị hàm số.

Lời giải chi tiết bài 11 trang 68 SBT Toán 11 - Kết nối tri thức

Dưới đây là lời giải chi tiết cho từng phần của bài 11 trang 68 SBT Toán 11 Kết nối tri thức:

Câu a: ... (Giải thích chi tiết câu a)

...

Câu b: ... (Giải thích chi tiết câu b)

...

Câu c: ... (Giải thích chi tiết câu c)

...

Mẹo giải bài tập Toán 11 hiệu quả

Để giải bài tập Toán 11 hiệu quả, bạn nên:

  1. Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, định lý, công thức và các tính chất của hàm số.
  2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  3. Sử dụng các công cụ hỗ trợ: Sử dụng máy tính bỏ túi, phần mềm vẽ đồ thị để kiểm tra kết quả và trực quan hóa bài toán.
  4. Tìm kiếm sự giúp đỡ: Nếu gặp khó khăn, hãy hỏi thầy cô, bạn bè hoặc tìm kiếm trên internet.

Tại sao nên chọn tusach.vn để học Toán 11?

Tusach.vn là một website học tập uy tín, cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm:

  • Giải bài tập Sách bài tập Toán 11: Giải chi tiết, dễ hiểu, chính xác.
  • Giải bài tập trong sách giáo khoa Toán 11: Cung cấp đáp án và lời giải chi tiết.
  • Bài giảng Toán 11: Trình bày kiến thức một cách hệ thống, dễ hiểu.
  • Đề thi thử Toán 11: Giúp học sinh làm quen với cấu trúc đề thi và rèn luyện kỹ năng làm bài.

Hãy truy cập tusach.vn ngay hôm nay để học Toán 11 hiệu quả và đạt kết quả cao!

Bảng tổng hợp các công thức quan trọng

Công thứcMô tả
Đạo hàm của hàm số y = f(x)f'(x) = lim (h->0) [f(x+h) - f(x)] / h
Đạo hàm của hàm số lũy thừa(x^n)' = n*x^(n-1)

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN