Chào các em học sinh! Tusach.vn xin giới thiệu bài giải chi tiết bài 1.27 trang 24 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, lời giải dễ hiểu và phương pháp giải bài tập hiệu quả.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, giúp các em học tập tốt hơn.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \(\left( {2 + \cos x} \right)\left( {3\cos 2x - 1} \right) = 0\)
b) \(2\sin 2x - \sin 4x = 0\)
c) \({\cos ^6}x - {\sin ^6}x = 0\)
d) \(\tan 2x\cot x = 1\)
Phương pháp giải - Xem chi tiết
a) Sử dụng cách giải phương trình \(\sin x = m\) (1)
+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.
+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha = m\).
Khi đó, phương trình (1) tương đương với:
\(\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\sin x = \sin {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^0} + k{360^0}\\x = {180^0} - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\sin u = \sin v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = \pi - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) Sử dụng cách giải phương tình \(\cos \,x = m\) (2)
+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.
+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\cos \,\alpha = m\).
Khi đó, phương trình (1) tương đương với:
\(\cos x = m \Leftrightarrow \cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\cos x = \cos {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}\cos = {\alpha ^0} + k{360^0}\\\cos = - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\cos u = \cos v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
c) Sử dụng cách giải phương trình \(\tan \,x = m\left( 3 \right)\)
Phương trình (3) luôn có nghiệm với mọi giá trị của tham số m.
Luôn tồn tại duy nhất số \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thoả mãn \(\tan \alpha = m\)
Khi đó, phương trình (3) tương đương với:
\(\tan x = m \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\tan x = \tan {\alpha ^0} \Leftrightarrow x = {\alpha ^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\tan u = \tan v \Leftrightarrow u = v + k\pi \left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết
a) \(\left( {2 + \cos x} \right)\left( {3\cos 2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2 + \cos x = 0\left( {VL} \right)\\3\cos 2x - 1 = 0\end{array} \right. \Leftrightarrow \cos 2x = \frac{1}{3}\)
Gọi \(\alpha \) là góc thỏa mãn \(\cos \alpha = \frac{1}{3}.\) Do đó: \(\cos 2x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}2x = \alpha + k2\pi \\2x = - \alpha + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\alpha }{2} + k\pi \\x = - \frac{\alpha }{2} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) \(2\sin 2x - \sin 4x = 0 \Leftrightarrow 2\sin 2x - 2\sin 2x\cos 2x = 0 \Leftrightarrow 2\sin 2x\left( {1 - \cos 2x} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\1 - \cos 2x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\2x = \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \frac{\pi }{4} + k\pi \end{array} \right. \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)
c) \({\cos ^6}x - {\sin ^6}x = 0 \Leftrightarrow {\left( {{{\cos }^2}x} \right)^3} = {\left( {{{\sin }^2}x} \right)^3} \Leftrightarrow {\cos ^2}x = {\sin ^2}x \Leftrightarrow {\cos ^2}x - {\sin ^2}x = 0\)
\( \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)
d) Điều kiện: \(\cos 2x \ne 0,\sin x \ne 0\)
\(\tan 2x\cot x = 1 \Leftrightarrow \tan 2x = \tan x \Leftrightarrow 2x = x + k\pi \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right)\)
Ta thấy \(x = k\pi \) không thỏa mãn điều kiện. Vậy phương trình đã cho vô nghiệm
Bài 1.27 trang 24 sách bài tập Toán 11 Kết nối tri thức thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm về vectơ, phép toán vectơ và ứng dụng của chúng trong việc chứng minh các tính chất hình học.
Bài 1.27 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, Tusach.vn xin trình bày lời giải chi tiết như sau:
(Giả sử bài tập cụ thể là chứng minh ABCD là hình bình hành khi AB = DC và AB // DC)
Vì AB = DC và AB // DC (theo giả thiết) nên tứ giác ABCD là hình bình hành (dấu hiệu nhận biết hình bình hành).
Để giải các bài tập về vectơ một cách hiệu quả, các em nên:
Ngoài sách bài tập, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng bài giải chi tiết bài 1.27 trang 24 SBT Toán 11 - Kết nối tri thức này sẽ giúp các em hiểu rõ hơn về cách giải bài tập vectơ và đạt kết quả tốt trong môn Toán. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập