Chào các em học sinh! Bài viết này của tusach.vn sẽ cung cấp lời giải chi tiết và dễ hiểu bài 5.22 trang 86 SBT Toán 11 Kết nối tri thức. Chúng tôi sẽ giúp các em nắm vững kiến thức và phương pháp giải bài tập một cách hiệu quả.
Hãy cùng tusach.vn khám phá lời giải chi tiết ngay sau đây!
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3\;\;\;\;\;\;\;\;\;khi\;x \le 1\\ax + b\;\;khi\;1 < x < 2\\5\;\;\;\;\;\;\;\;\;khi\;x \ge 2\end{array} \right.\).
Đề bài
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3\;\;\;\;\;\;\;\;\;khi\;x \le 1\\ax + b\;\;khi\;1 < x < 2\\5\;\;\;\;\;\;\;\;\;khi\;x \ge 2\end{array} \right.\). Xác định a, b để hàm số liên tục trên \(\mathbb{R}\).
Phương pháp giải - Xem chi tiết
Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên \(\left[ {a;b} \right]\) nếu nó liên tục trên khoảng \(\left( {a;b} \right)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right);\;\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\)
Lời giải chi tiết
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {ax + b} \right) = a + b\), \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {ax + b} \right) = 2a + b\)
Để hàm số f(x) liên tục trên \(\mathbb{R}\) thì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\end{array} \right.\).
Do đó, \(\left\{ \begin{array}{l}a + b = 3\\2a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 1\end{array} \right.\)
Bài 5.22 trang 86 Sách bài tập Toán 11 Kết nối tri thức thường xoay quanh các chủ đề về đường thẳng và mặt phẳng trong không gian, cụ thể là việc xác định mối quan hệ giữa chúng (song song, vuông góc, cắt nhau) và tính góc giữa chúng. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản sau:
Để cung cấp lời giải chính xác, chúng ta cần biết nội dung cụ thể của bài 5.22. Tuy nhiên, dưới đây là một ví dụ về cách tiếp cận giải một bài toán tương tự:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Gọi H là hình chiếu của S lên mặt phẳng (ABCD). Vì SA vuông góc với (ABCD) nên H trùng với A. Do đó, AC là hình chiếu của SC lên mặt phẳng (ABCD).
Góc giữa SC và mặt phẳng (ABCD) chính là góc SCA. Ta có: tan(SCA) = SA/AC = a/(a√2) = 1/√2. Suy ra SCA ≈ 35.26°.
Tusach.vn luôn đồng hành cùng các em học sinh trong quá trình học tập. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách giáo khoa và sách bài tập Toán 11 Kết nối tri thức. Hãy truy cập tusach.vn để được hỗ trợ tốt nhất!
| Chủ đề | Nội dung |
|---|---|
| Đường thẳng song song | Điều kiện, tính chất |
| Đường thẳng vuông góc | Điều kiện, tính chất |
| Góc giữa hai đường thẳng | Công thức tính |
| Nguồn: tusach.vn | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập