1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 8.27 trang 53 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 8.27 trang 53 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 8.27 trang 53 SBT Toán 11 - Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết bài 8.27 trang 53 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Cho \(A,B\) là hai biến cố độc lập và xung khắc với \(P\left( A \right) = 0,35;P\left( {A \cup B} \right) = 0,8\).

Đề bài

Cho \(A,B\) là hai biến cố độc lập và xung khắc với \(P\left( A \right) = 0,35;P\left( {A \cup B} \right) = 0,8\). Tính xác suất để:

a) Xảy ra \(B\).

b) Xảy ra cả \(A\) và \(B\).

c) Xảy ra đúng một trong hai biến cố \(A\) hoặc \(B\).

Phương pháp giải - Xem chi tiếtGiải bài 8.27 trang 53 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Áp dụng quy tắc cộng, nhân xác suất

a) Do \(A,B\) xung khắc nên \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\), suy ra \(P\left( B \right) = P\left( {A \cup B} \right) - P\left( A \right)\).

b) Do \(A,B\) độc lập nên \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right)\).

c) Do \(\left( {A,\overline B } \right)\) độc lập và \(\left( {\overline A ,B} \right)\) độc lập nên

\(\begin{array}{*{20}{r}}{P\left( {A\overline B } \right) = P\left( A \right) \cdot P\left( {\overline B } \right)}&{}\\{P\left( {\overline A B} \right) = P\left( {\overline A } \right) \cdot P\left( B \right)}&{}\end{array}\)

Xác suất xảy ra đúng một trong hai biến cố \(A\) hoặc \(B\) là

\(P\left( {A\overline B \cup \overline A B} \right) = P\left( {A\overline B } \right) + P\left( {\overline A B} \right)\)

Lời giải chi tiết

a) Do \(A,B\) xung khắc nên \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\), suy ra \(P\left( B \right) = P\left( {A \cup B} \right) - P\left( A \right) = 0,8 - 0,35 = 0,45\).

b) Do \(A,B\) độc lập nên \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right) = 0,35 \cdot 0,45 = 0,1575\).

c) Do \(\left( {A,\overline B } \right)\) độc lập và \(\left( {\overline A ,B} \right)\) độc lập nên\(\begin{array}{*{20}{r}}{P\left( {A\overline B } \right) = P\left( A \right) \cdot P\left( {\overline B } \right) = 0,35 \cdot 0,55 = 0,1925.}&{}\\{P\left( {\overline A B} \right) = P\left( {\overline A } \right) \cdot P\left( B \right) = 0,65 \cdot 0,45 = 0,2925.}&{}\end{array}\)

Xác suất xảy ra đúng một trong hai biến cố \(A\) hoặc \(B\) là

\(P\left( {A\overline B \cup \overline A B} \right) = P\left( {A\overline B } \right) + P\left( {\overline A B} \right) = 0,1925 + 0,2925 = 0,485.\)

Giải bài 8.27 trang 53 SBT Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 8.27 trang 53 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng về ứng dụng của đạo hàm để khảo sát hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, cực trị và điểm uốn của hàm số.

Nội dung bài 8.27

Bài 8.27 yêu cầu học sinh khảo sát hàm số f(x) = x3 - 3x2 + 2. Cụ thể, cần xác định:

  • Tập xác định của hàm số
  • Các điểm cực trị của hàm số
  • Điểm uốn của hàm số
  • Vẽ đồ thị hàm số

Hướng dẫn giải chi tiết

  1. Xác định tập xác định: Hàm số f(x) = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là D = ℝ.
  2. Tính đạo hàm cấp một: f'(x) = 3x2 - 6x
  3. Tìm điểm cực trị: Giải phương trình f'(x) = 0 để tìm các điểm cực trị.

    3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

    Tính đạo hàm cấp hai: f''(x) = 6x - 6

    f''(0) = -6 < 0 ⇒ Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2

    f''(2) = 6 > 0 ⇒ Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2

  4. Tìm điểm uốn: Giải phương trình f''(x) = 0 để tìm các điểm uốn.

    6x - 6 = 0 ⇔ x = 1

    f'''(x) = 6 ≠ 0 ⇒ Hàm số có điểm uốn tại x = 1, giá trị điểm uốn là f(1) = 0

  5. Vẽ đồ thị hàm số: Dựa vào các thông tin đã tìm được, ta có thể vẽ đồ thị hàm số f(x) = x3 - 3x2 + 2.

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại các bước tính toán để tránh sai sót.
  • Nắm vững các định nghĩa và tính chất của đạo hàm, cực trị và điểm uốn.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm vẽ đồ thị để kiểm tra kết quả.

Bài tập tương tự

Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 Kết nối tri thức. Ví dụ:

  • Bài 8.28 trang 53 SBT Toán 11
  • Bài 8.29 trang 54 SBT Toán 11

Kết luận

Hy vọng với hướng dẫn chi tiết này, các em đã hiểu rõ cách giải bài 8.27 trang 53 sách bài tập Toán 11 Kết nối tri thức. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với Tusach.vn để được hỗ trợ.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN