1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 8.10 trang 51 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 8.10 trang 51 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 8.10 trang 51 SBT Toán 11 - Kết nối tri thức

Chào các em học sinh! Tusach.vn xin giới thiệu đến các em lời giải chi tiết bài 8.10 trang 51 sách bài tập Toán 11 Kết nối tri thức. Bài tập này thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng giải quyết các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.

Chúng tôi hy vọng với lời giải này, các em sẽ hiểu rõ hơn về phương pháp giải bài tập và tự tin hơn trong quá trình học tập.

Cho \(P\left( A \right) = \frac{2}{5};P\left( B \right) = \frac{1}{3};P\left( {A \cup B} \right) = \frac{1}{2}\)

Đề bài

Cho \(P\left( A \right) = \frac{2}{5};P\left( B \right) = \frac{1}{3};P\left( {A \cup B} \right) = \frac{1}{2}\). Hỏi \(A\) và \(B\) có độc lập hay không?

Phương pháp giải - Xem chi tiếtGiải bài 8.10 trang 51 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Tính \(P\left( {AB} \right) = P(A) + P(B) - P\left( {A \cup B} \right)\)

\(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) độc lập với nhau

\(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) không độc lập với nhau

Lời giải chi tiết

\(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{7}{{30}} \ne P\left( A \right).P\left( B \right) = \frac{2}{{15}} = \frac{4}{{30}}\).

Vậy \(A\) và \(B\) không độc lập.

Giải bài 8.10 trang 51 SBT Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết và dễ hiểu

Bài 8.10 trang 51 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị của hàm số. Dưới đây là lời giải chi tiết, từng bước, giúp các em hiểu rõ cách tiếp cận và giải quyết bài toán này.

Nội dung bài toán

Bài 8.10 yêu cầu học sinh tìm cực trị của hàm số. Để giải bài toán này, chúng ta cần thực hiện các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm cấp một: Tính đạo hàm f'(x) của hàm số.
  3. Tìm điểm dừng: Giải phương trình f'(x) = 0 để tìm các điểm mà đạo hàm bằng không.
  4. Lập bảng biến thiên: Xác định dấu của đạo hàm f'(x) trên các khoảng xác định để xác định khoảng hàm số đồng biến, nghịch biến.
  5. Kết luận về cực trị: Dựa vào bảng biến thiên, xác định các điểm cực đại, cực tiểu của hàm số.

Lời giải chi tiết

Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử hàm số cần tìm cực trị là f(x) = x3 - 3x2 + 2.

  1. Tập xác định: Hàm số f(x) xác định trên tập số thực R.
  2. Đạo hàm cấp một: f'(x) = 3x2 - 6x.
  3. Điểm dừng: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.
  4. Bảng biến thiên:
    x-∞02+∞
    f'(x)+-+
    f(x)
  5. Kết luận: Hàm số đạt cực đại tại x = 0 với giá trị f(0) = 2 và đạt cực tiểu tại x = 2 với giá trị f(2) = -2.

Lưu ý quan trọng

  • Luôn kiểm tra tập xác định của hàm số trước khi tính đạo hàm.
  • Chú ý đến các điểm không xác định của đạo hàm, vì chúng có thể là điểm cực trị hoặc điểm uốn.
  • Sử dụng bảng biến thiên để xác định chính xác khoảng hàm số đồng biến, nghịch biến và các điểm cực trị.

Ứng dụng của việc tìm cực trị

Việc tìm cực trị của hàm số có nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Tối ưu hóa: Tìm giá trị lớn nhất hoặc nhỏ nhất của một đại lượng nào đó.
  • Kinh tế: Xác định mức sản lượng tối ưu để đạt lợi nhuận cao nhất.
  • Kỹ thuật: Thiết kế các cấu trúc có độ bền cao nhất hoặc trọng lượng nhẹ nhất.

Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ nắm vững phương pháp giải bài 8.10 trang 51 sách bài tập Toán 11 Kết nối tri thức và áp dụng thành công vào các bài tập tương tự. Chúc các em học tốt!

Nếu có bất kỳ thắc mắc nào, đừng ngần ngại đặt câu hỏi trong phần bình luận bên dưới. Tusach.vn luôn sẵn sàng hỗ trợ các em.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN