Chào mừng các em học sinh đến với lời giải chi tiết bài 1.16 trang 17 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Tìm tập xác định của hàm số sau:
Đề bài
Tìm tập xác định của hàm số sau:
a) \(y = \cot 3x\);
b) \(y = \sqrt {1 - \cos 4x} \);
c) \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\);
d) \(y = \sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \).
Phương pháp giải - Xem chi tiết
Điều kiện xác định của \(y = \cot x\) là \(\sin x \ne 0\).
Điều kiện xác định của \(\sqrt {f(x)} \) là \(f(x) \ge 0\).
Điều kiện xác định của \(\frac{1}{{\sqrt {f(x)} }}\) là \(f(x) > 0\).
Điều kiện xác định của \(\frac{1}{{f(x)}}\) là \(f(x) \ne 0\).
Lời giải chi tiết
a) Biểu thức \(\cot 3x\)có nghĩa khi \(\sin 3x \ne 0\) hay \(3x \ne k\pi \)\( \Rightarrow x \ne k\frac{\pi }{3};k \in \mathbb{Z}\). Vậy tập xác định của hàm số là: \(D = \mathbb{R}\backslash \left\{ {k\frac{\pi }{3}|k \in \mathbb{Z}} \right\}\).
b) Biểu thức \(y = \sqrt {1 - \cos 4x} \)có nghĩa khi \(1 - \cos 4x \ge 0\). Nhưng \(\cos 4x \le 1\,\,\forall x \in \mathbb{R}\). Vậy tập xác định của hàm số là: \(\mathbb{R}\).
c) Hàm số \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\) có nghĩa khi \({\sin ^2}x - {\cos ^2}x \ne 0\) hay \(\cos 2x \ne 0\).
\(2x \ne \frac{\pi }{2} + k\pi \Rightarrow x \ne \frac{\pi }{4} + k\frac{\pi }{2},\,\,k \in \mathbb{Z}.\)
Vậy tập xác định của hàm số là: \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|\,\,k \in \mathbb{Z}} \right\}.\)
d) Hàm số\(y = \sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \) có nghĩa khi \(1 - \sin 2x \ne 0\) hay \(\sin 2x \ne 1\).
\(\sin 2x \ne 1 \Rightarrow 2x \ne \frac{\pi }{2} + k\pi \Rightarrow x \ne \frac{\pi }{4} + k\frac{\pi }{2},\,k \in \mathbb{Z}.\)
Vậy tập xác định của hàm số là: \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}.\)
Bài 1.16 trang 17 sách bài tập Toán 11 Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai, điều kiện xác định của hàm số và các phép biến đổi hàm số để giải quyết các bài toán cụ thể.
Bài 1.16 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài 1.16:
Để xác định tập xác định của hàm số, ta cần tìm các giá trị của x sao cho biểu thức của hàm số có nghĩa. Ví dụ, nếu hàm số có chứa mẫu số, ta cần đảm bảo mẫu số khác 0. Nếu hàm số có chứa căn bậc hai, ta cần đảm bảo biểu thức dưới dấu căn lớn hơn hoặc bằng 0.
Để tìm tập giá trị của hàm số, ta cần tìm khoảng giá trị mà y có thể nhận được. Đối với hàm số bậc hai, tập giá trị thường là một khoảng hoặc một đoạn thẳng. Ta có thể sử dụng công thức tính đỉnh của parabol để tìm giá trị lớn nhất hoặc nhỏ nhất của hàm số.
Để xác định tính đơn điệu của hàm số, ta cần xét dấu của đạo hàm của hàm số. Nếu đạo hàm dương trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu đạo hàm âm trên một khoảng, hàm số nghịch biến trên khoảng đó.
Để vẽ đồ thị hàm số, ta cần xác định các điểm đặc biệt của đồ thị, như đỉnh, trục đối xứng, giao điểm với các trục tọa độ. Sau đó, ta có thể vẽ đồ thị bằng cách nối các điểm này lại với nhau.
Giả sử hàm số được cho là: y = x2 - 4x + 3
Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm sách giáo khoa, sách bài tập, đề thi và lời giải chi tiết. Chúng tôi luôn cập nhật những thông tin mới nhất và hữu ích nhất để giúp các em học tập tốt hơn. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập