Chào mừng các em học sinh đến với lời giải chi tiết bài 2.10 trang 35 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu hơn về kiến thức và rèn luyện kỹ năng giải toán.
tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Một công ty dược phẩm đang thử nghiệm một loại thuốc mới. Một thí nghiệm bắt đầu với \(1,0 \times {10^9}\) vi khuẩn
Đề bài
Một công ty dược phẩm đang thử nghiệm một loại thuốc mới. Một thí nghiệm bắt đầu với \(1,0 \times {10^9}\) vi khuẩn. Một liều thuốc được sử dụng sau mỗi bốn giờ có thể tiêu diệt được \(4,0 \times {10^8}\) vi khuẩn. Giữa các liều thuốc, số lượng vi khuẩn có thể tăng lên 25%.
a) Viết hệ thức truy hồi cho số lượng vi khuẩn sống trước mỗi lần sử dụng.
b) Tìm số vi khuẩn còn sống trước lần sử dụng thứ năm.
Phương pháp giải - Xem chi tiết
+ Ta kí hiệu \(u = u\left( n \right)\) bởi \(\left( {{u_n}} \right)\), do đó dãy số \(\left( {{u_n}} \right)\) được viết dưới dạng khai triển \({u_1},{u_2},...,{u_n},...\) Số \({u_1}\) gọi là số hạng đầu, số \({u_n}\) là số hạng thứ n và gọi là số hạng tổng quát của dãy số.
+ Công thức truy hồi là hệ thức biểu thị số hạng thứ n của dãy số qua số hạng (hay vài số hạng) đứng trước nó.
Lời giải chi tiết
a) Gọi \({u_0} = 1,{0.10^9}\) là số vi khuẩn tại thời điểm ban đầu và \({u_n}\) là số vi khuẩn trước lần dùng thuốc lần thứ n.
Do mỗi liều thuốc được sử dụng sau bốn giờ có thể tiêu diệt \(4,0 \times {10^8}\) vi khuẩn và giữa các liều thuốc, số lượng vi khuẩn có thể tăng lên 25% nên ta có:
\({u_{n + 1}} = \left( {{u_n} - 4,{{0.10}^8}} \right) + 25\% .{u_n} = 1,25{u_n} - 4,{0.10^8}\)
b) Ta có: \({u_1} = 1,{0.10^9}\)
\({u_2} = 1,25{u_1} - 4,{0.10^8} = 8,{5.10^8}\)
\({u_3} = 1,25{u_2} - 4,{0.10^8} = 6,{625.10^8}\)
\({u_4} = 1,25{u_3} - 4,{0.10^8} = 4,{28125.10^8}\)
\({u_5} = 1,25{u_4} - 4,{0.10^8} = 1,{3515625.10^8}\)
Vậy số vi khuẩn còn sống trước lần sử dụng thuốc thứ năm là 135 156 250 con.
Bài 2.10 trang 35 sách bài tập Toán 11 Kết nối tri thức thuộc chương 2: Các phép biến hình. Bài tập này thường tập trung vào việc vận dụng kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán hình học.
Bài 2.10 thường yêu cầu học sinh:
Để giải bài 2.10 trang 35 SBT Toán 11 Kết nối tri thức, các em cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho bài 2.10 (ví dụ, giả sử bài tập yêu cầu tìm ảnh của điểm A(1;2) qua phép tịnh tiến theo vectơ v = (3;-1)):
Gọi A'(x'; y') là ảnh của A qua phép tịnh tiến theo vectơ v. Ta có:
x' = x + vx = 1 + 3 = 4
y' = y + vy = 2 + (-1) = 1
Vậy A'(4;1).
Ngoài sách bài tập, các em có thể tham khảo thêm:
Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin giải quyết bài 2.10 trang 35 SBT Toán 11 Kết nối tri thức và các bài tập tương tự. Chúc các em học tập tốt!
| Phép biến hình | Công thức biến đổi tọa độ |
|---|---|
| Tịnh tiến | (x'; y') = (x + vx; y + vy) |
| Quay | (x'; y') = (x cos α - y sin α; x sin α + y cos α) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập