Chào mừng các em học sinh đến với lời giải chi tiết bài 1.6 trang 7 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu nhất.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Chứng minh các đẳng thức sau:
Đề bài
Chứng minh các đẳng thức sau:
a) \({\cos ^4}x - {\sin ^4}x = 2{\cos ^2}x - 1\);
b) \({\tan ^2}x - {\sin ^2}x = {\tan ^2}x.{\sin ^2}x\);
c) \({(\sin x + \cos x)^2} + {(\sin x - \cos x)^2} = 2\).
Phương pháp giải - Xem chi tiết
Sử dụng các hằng đẳng thức đáng nhớ và áp dụng công thức \({\sin ^2}a + {\cos ^2}a = 1\), \({\mathop{\rm tanx}\nolimits} = \frac{{sinx}}{{\cos x}}\) để biến đổi linh hoạt vế trái thành vế phải.
Lời giải chi tiết
a) Ta có
\(\begin{array}{l}VT = {\cos ^4}x - {\sin ^4}x\\\,\,\,\,\,\,\,\,\,\, = \left( {{{\cos }^2}x - {{\sin }^2}x} \right)\left( {{{\cos }^2}x + {{\sin }^2}x} \right)\\\,\,\,\,\,\,\,\,\,\, = ({\cos ^2}x - {\sin ^2}x).1 = {\cos ^2}x - {\sin ^2}x\\\,\,\,\,\,\,\,\,\,\, = {\cos ^2}x - (1 - {\cos ^2}x) = {\cos ^2}x - 1 + {\cos ^2}x\\\,\,\,\,\,\,\,\,\,\, = 2{\cos ^2}x - 1 = {\rm{VP}}\end{array}\)
b) Ta có
\(\begin{array}{l}VT = {\tan ^2}x - {\sin ^2}x = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - {\sin ^2}x\\\,\,\,\,\,\,\,\,\, = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - \frac{{{{\sin }^2}x.{{\cos }^2}x}}{{{{\cos }^2}x}} = \frac{{{{\sin }^2}x - {{\sin }^2}x{{\cos }^2}x}}{{{{\cos }^2}x}}\\\,\,\,\,\,\,\,\,\, = \frac{{{{\sin }^2}x(1 - {{\cos }^2}x)}}{{{{\cos }^2}x}} = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}.(1 - {\cos ^2}x)\\\,\,\,\,\,\,\,\,\, = {\tan ^2}x.{\sin ^2}x = {\rm{VP}}{\rm{.}}\end{array}\)
c) Ta có
\(\begin{array}{l}VT = {(\sin x + \cos x)^2} + {(\sin x - \cos x)^2}\\\,\,\,\,\,\,\,\,\,\, = {\sin ^2}x + 2\sin x{\mathop{\rm cosx}\nolimits} + co{s^2}x + {\sin ^2}x - 2\sin x\cos x + {\cos ^2}x\\\,\,\,\,\,\,\,\,\,\, = 2{\sin ^2}x + 2{\cos ^2}x = 2({\sin ^2}x + {\cos ^2}x) = 2.1 = 2 = {\rm{VP}}{\rm{.}}\end{array}\)
Bài 1.6 trang 7 sách bài tập Toán 11 Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về điều kiện xác định của hàm số, các phép toán trên hàm số và cách xác định tập xác định của hàm số hợp. Việc nắm vững các khái niệm này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 1.6 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng câu hỏi cụ thể:
Hàm số: f(x) = √(2x - 1)
Để hàm số có nghĩa, biểu thức dưới dấu căn phải lớn hơn hoặc bằng 0:
2x - 1 ≥ 0
=> 2x ≥ 1
=> x ≥ 1/2
Vậy tập xác định của hàm số là: D = [1/2; +∞)
Hàm số: g(x) = 1 / (x - 3)
Để hàm số có nghĩa, mẫu số phải khác 0:
x - 3 ≠ 0
=> x ≠ 3
Vậy tập xác định của hàm số là: D = R \ {3}
Hàm số: h(x) = √(x + 2) + 1 / (x - 1)
Để hàm số có nghĩa, cả hai biểu thức dưới dấu căn và mẫu số đều phải thỏa mãn điều kiện:
x + 2 ≥ 0 => x ≥ -2
x - 1 ≠ 0 => x ≠ 1
Vậy tập xác định của hàm số là: D = [-2; 1) ∪ (1; +∞)
Để củng cố kiến thức, các em có thể tự giải thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Tusach.vn sẽ tiếp tục cập nhật thêm nhiều bài giải và tài liệu học tập hữu ích khác. Chúc các em học tốt!
| Biểu thức | Điều kiện |
|---|---|
| √(f(x)) | f(x) ≥ 0 |
| 1/f(x) | f(x) ≠ 0 |
| loga(f(x)) | f(x) > 0 và a > 0, a ≠ 1 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập