Chào mừng các em học sinh đến với lời giải chi tiết bài 8.11 trang 51 sách bài tập Toán 11 Kết nối tri thức. Bài tập này thuộc chương trình học Toán lớp 11, tập trung vào việc rèn luyện kỹ năng giải quyết các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác, lời giải dễ hiểu và phương pháp giải bài tập hiệu quả.
Gieo hai đồng xu cân đối. Xét biến cố \(A\): “Cả hai đồng xu đều ra mặt sấp”
Đề bài
Gieo hai đồng xu cân đối. Xét biến cố \(A\): “Cả hai đồng xu đều ra mặt sấp”, \(B\): “Có ít nhất một đồng xu đều ra mặt sấp”. Hỏi \(A\) và \(B\) có độc lập hay không?
Phương pháp giải - Xem chi tiết
Tính \(P(A),P(B),P(AB)\)
\(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) độc lập với nhau
\(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) không độc lập với nhau
Lời giải chi tiết
Tính \(P\left( A \right)\)
Ta có \(\Omega = \left\{ {SS,SN,NS,NN} \right\}\), \(n\left( \Omega \right) = 4\), \(A = \left\{ {SS} \right\},n\left( A \right) = 1\).
Vậy \(P\left( A \right) = \frac{1}{4}\).
Tính \(P\left( B \right)\)
Ta có \(B = \left\{ {SS,SN,NS} \right\}\), \(n\left( B \right) = 3\).
Vậy \(P\left( B \right) = \frac{3}{4}\).
Tính \(P\left( {AB} \right)\)
Ta có \(AB = A \cap B = \left\{ {SS} \right\}\), \(n\left( {A \cap B} \right) = 1\).
Vậy \(P\left( {AB} \right) = \frac{1}{4}\).
Ta có \(P\left( {AB} \right) = \frac{1}{4} = \frac{4}{{16}} \ne P\left( A \right).P\left( B \right) = \frac{1}{4}.\frac{3}{4} = \frac{3}{{16}}\).
Vậy \(A\) và \(B\) không độc lập.
Bài 8.11 trang 51 sách bài tập Toán 11 Kết nối tri thức yêu cầu chúng ta tìm đạo hàm của hàm số và sử dụng đạo hàm để giải quyết các bài toán liên quan đến tính đơn điệu, cực trị của hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, Tusach.vn xin trình bày lời giải chi tiết như sau:
(Nội dung lời giải chi tiết bài 8.11 sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng và ví dụ minh họa. Ví dụ, nếu bài toán yêu cầu tìm đạo hàm của hàm số f(x) = x^2 + 2x + 1, lời giải sẽ trình bày các bước sau:)
Sau khi đã nắm vững cách giải bài 8.11, các em có thể tự luyện tập với các bài tập tương tự để củng cố kiến thức. Dưới đây là một số bài tập gợi ý:
Để đạt được kết quả tốt nhất khi giải bài tập về đạo hàm, các em cần lưu ý những điều sau:
Tusach.vn hy vọng rằng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn khi giải các bài tập về đạo hàm trong chương trình Toán 11. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập