Chào các em học sinh! Tusach.vn xin giới thiệu bài giải chi tiết bài 1.29 trang 24 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, lời giải dễ hiểu và phương pháp giải bài tập hiệu quả.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, giúp các em học tập tốt hơn.
Một chiếc guồng nước có dạng hình tròn bán kính 2,5m; trục của nó đặt cách mặt nước 2m (hình bên).
Đề bài
Một chiếc guồng nước có dạng hình tròn bán kính 2,5m; trục của nó đặt cách mặt nước 2m (hình bên). Khi guồng quay đều, khoảng cách h (mét) tính từ một chiếc gầu gắn tại điểm A trên guồng đến mặt nước là \(h = \left| y \right|\) trong đó \(y = 2 + 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right)\) với x là thời gian quay của guồng \(\left( {x \ge 0} \right),\) tính bằng phút; ta quy ước rằng \(y > 0\) khi gầu ở trên mặt nước và \(y < 0\) khi gầu ở dưới mặt nước.
a) Khi nào chiếc gầu ở vị trí cao nhất? Thấp nhất?
b) Chiếc gầu cách mặt nước 2 mét lần đầu tiên khi nào?

Phương pháp giải - Xem chi tiết
* Sử dụng kiến thức \( - 1 \le \sin x \le 1\) với mọi x
* Sử dụng cách giải phương trình \(\sin x = m\) (1)
+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.
+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha = m\).
Khi đó, phương trình (1) tương đương với:
\(\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết
a) Vì \( - 1 \le \sin 2\pi \left( {x - \frac{1}{4}} \right) \le 1\) nên \( - 2,5 \le 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) \le 2,5\)
Do đó, \( - 0,5 = 2 - 2,5 \le 2 + 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) \le 2 + 2,5 = 4,5\;\forall x \in \mathbb{R}\)
Suy ra, gầu ở vị trí cao nhất khi \(\sin 2\pi \left( {x - \frac{1}{4}} \right) = 1 \Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{1}{2} + k\left( {k \in \mathbb{Z}} \right)\)
Vì gầu ở vị trí cao nhất tại các thời điểm \(\frac{1}{2},\frac{3}{2},\frac{5}{2},...\) phút
Tương tự, gầu ở vị trí thấp nhất khi \(\sin 2\pi \left( {x - \frac{1}{4}} \right) = - 1 \Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = - \frac{\pi }{2} + k2\pi \Leftrightarrow x = k\left( {k \in \mathbb{Z}} \right)\)
Vì gầu ở vị trí cao nhất tại các thời điểm 0, 1, 2, 3… phút
b) Gầu cách mặt nước 2m khi \(2 + 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) = 2 \Leftrightarrow 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) = 0 \Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = k\pi \Leftrightarrow x = \frac{1}{4} + \frac{k}{2}\left( {k \in \mathbb{Z}} \right)\)
Vậy chiếc gầu cách mặt nước 2m lần đầu tại thời điểm \(x = \frac{1}{4}\) phút
Bài 1.29 trang 24 sách bài tập Toán 11 Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai, điều kiện xác định của hàm số và các phép biến đổi hàm số để giải quyết. Việc nắm vững các khái niệm và phương pháp giải bài tập trong chương này là rất quan trọng để xây dựng nền tảng vững chắc cho các chương học tiếp theo.
Bài 1.29 yêu cầu học sinh xác định tập xác định của hàm số. Cụ thể, bài tập đưa ra một số hàm số và yêu cầu học sinh tìm ra các giá trị của x mà hàm số có nghĩa. Để giải bài tập này, học sinh cần nắm vững các điều kiện xác định của các hàm số cơ bản như hàm số phân thức, hàm số căn bậc hai, hàm số logarit,…
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 1.29:
Hàm số: y = √(2x - 1)
Điều kiện xác định: 2x - 1 ≥ 0
Giải bất phương trình: 2x ≥ 1 => x ≥ 1/2
Vậy tập xác định của hàm số là: D = [1/2; +∞)
Hàm số: y = 1 / (x - 3)
Điều kiện xác định: x - 3 ≠ 0
Giải phương trình: x ≠ 3
Vậy tập xác định của hàm số là: D = R \ {3}
Hàm số: y = log₂(x + 2)
Điều kiện xác định: x + 2 > 0
Giải bất phương trình: x > -2
Vậy tập xác định của hàm số là: D = (-2; +∞)
Khi giải bài tập về tập xác định của hàm số, cần chú ý:
Để củng cố kiến thức về tập xác định của hàm số, các em có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 Kết nối tri thức hoặc trên các trang web học tập trực tuyến.
Hy vọng bài giải chi tiết bài 1.29 trang 24 SBT Toán 11 - Kết nối tri thức này sẽ giúp các em hiểu rõ hơn về cách giải bài tập về tập xác định của hàm số. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập