1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1.30 trang 25 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 1.30 trang 25 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 1.30 trang 25 SBT Toán 11 - Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết bài 1.30 trang 25 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.

Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t (ở đây t là số ngày tính từ ngày 1 tháng giêng)

Đề bài

Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t (ở đây t là số ngày tính từ ngày 1 tháng giêng) của một năm không nhuận được mô hình hóa bởi hàm số:

\(L\left( t \right) = 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right)\) với \(t \in \mathbb{Z}\) và \(0 < t \le 365\)

a) Vào ngày nào trong năm thì thành phố A có ít giờ ánh sáng mặt trời nhất?

b) Vào ngày nào trong năm thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?

c) Vào ngày nào trong năm thì thành phố A có khoảng 10 giờ ánh sáng mặt trời?

Phương pháp giải - Xem chi tiếtGiải bài 1.30 trang 25 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

* Sử dụng kiến thức \( - 1 \le \sin x \le 1\) với mọi x

* Sử dụng cách giải phương trình \(\sin x = m\) (1)

+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.

+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha = m\).

Khi đó, phương trình (1) tương đương với:

\(\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

Vì \( - 1 \le \sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 1\) nên \( - 2,83 \le 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 2,83\)

Do đó, \(9,17 = 12 - 2,83 \le 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 12 + 2,83 = 12,83\;\forall t \in \mathbb{R}\)

a) Ngày thành phố A có ít giờ ánh sáng nhất ứng với \(\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = - 1 \Leftrightarrow \frac{{2\pi }}{{365}}\left( {t - 80} \right) = \frac{{ - \pi }}{2} + k2\pi \Leftrightarrow t = \frac{{ - 45}}{4} + 365k\left( {k \in \mathbb{Z}} \right)\)

Vì \(0 < t \le 365\) nên \(k = 1,\) suy ra \(t = \frac{{ - 45}}{4} + 365 = 353,75.\) Như vậy, vào ngày thứ 353 của năm, tức là khoảng ngày 20 tháng 12 thì thành phố A sẽ có ít giờ ánh sáng mặt trời nhất.

b) Ngày thành phố A có nhiều giờ ánh sáng nhất ứng với \(\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = 1 \Leftrightarrow \frac{{2\pi }}{{365}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi \Leftrightarrow t = \frac{{45}}{4} + 365k\left( {k \in \mathbb{Z}} \right)\)

Vì \(0 < t \le 365\) nên \(k = 0,\) suy ra \(t = 171,25.\) Như vậy, vào ngày thứ 171 của năm, tức là khoảng ngày 20 tháng 6 thì thành phố A sẽ có nhiều giờ ánh sáng mặt trời nhất.

c) Thành phố A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu

\(12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = 10 \Leftrightarrow 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = \frac{{ - 200}}{{283}}\)

\( \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{365}}\left( {t - 80} \right) \approx - 0,78 + k2\pi \\\frac{{2\pi }}{{365}}\left( {t - 80} \right) \approx 3,938 + k2\pi \end{array} \right.\)

Từ đó ta được \(\left[ \begin{array}{l}t \approx 34,69 + 365k\\t \approx 308,3 + 365k\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vì \(0 < t \le 365\) nên \(k = 0,\) suy ra \(t \approx 34,69\) hoặc \(t \approx 308,30.\) Như vậy, vào ngày thứ 34 của năm, tức là khoảng ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thì thành phố A có khoảng 10 giờ ánh sáng mặt trời.

Giải bài 1.30 trang 25 SBT Toán 11 - Kết nối tri thức: Tổng quan

Bài 1.30 trang 25 sách bài tập Toán 11 Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai, điều kiện xác định của hàm số và các phép biến đổi hàm số để giải quyết các bài toán cụ thể.

Nội dung bài tập 1.30

Bài 1.30 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số.
  • Tìm tập giá trị của hàm số.
  • Xác định tính đơn điệu của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán liên quan đến ứng dụng của hàm số bậc hai.

Lời giải chi tiết bài 1.30 trang 25 SBT Toán 11 - Kết nối tri thức

Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài 1.30. (Ở đây sẽ là lời giải chi tiết của bài tập 1.30, ví dụ):

Ví dụ: Giải bài 1.30 (a)

Cho hàm số f(x) = x2 - 4x + 3. Hãy tìm tập xác định và tập giá trị của hàm số.

  1. Tập xác định: Vì f(x) là hàm số bậc hai, nên tập xác định của hàm số là D = ℝ.
  2. Tập giá trị: Hàm số f(x) có dạng parabol với hệ số a = 1 > 0, do đó hàm số có giá trị nhỏ nhất tại đỉnh của parabol. Hoành độ đỉnh là x0 = -b/(2a) = -(-4)/(2*1) = 2. Giá trị nhỏ nhất của hàm số là f(2) = 22 - 4*2 + 3 = -1. Vậy tập giá trị của hàm số là [−1, +∞).

Mẹo giải bài tập hàm số bậc hai

Để giải các bài tập về hàm số bậc hai một cách hiệu quả, các em có thể tham khảo một số mẹo sau:

  • Nắm vững các công thức về hàm số bậc hai, bao gồm công thức tính đỉnh, trục đối xứng, hệ số a, b, c.
  • Sử dụng phương pháp hoàn thiện bình phương để đưa hàm số về dạng chính tắc.
  • Vẽ đồ thị hàm số để trực quan hóa các tính chất của hàm số.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, các em có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức về hàm số:

  • Các trang web học Toán trực tuyến như tusach.vn, VietJack, Loigiaihay.
  • Các video bài giảng trên YouTube.
  • Các diễn đàn trao đổi kiến thức Toán học.

Kết luận

Hy vọng với lời giải chi tiết và những chia sẻ trên, các em đã hiểu rõ hơn về cách giải bài 1.30 trang 25 sách bài tập Toán 11 Kết nối tri thức. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN