Chào mừng các em học sinh đến với lời giải chi tiết bài 8 trang 67 sách bài tập Toán 11 - Kết nối tri thức. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức chính xác và dễ hiểu nhất.
Giá trị của \(m\) để hàm số
Đề bài
Giá trị của \(m\) để hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{{x^2} + 3x + 2}}{{x + 1}}}&{{\rm{\;khi\;}}x > - 1}\\{ - 2x + m}&{{\rm{\;khi\;}}x \le - 1}\end{array}} \right.\) liên tục trên \(\mathbb{R}\) là
A. 3.
B. 1.
C. -3.
D. -1.
Phương pháp giải - Xem chi tiết
Hàm số \(f\left( x \right)\) liên tục tại \({x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Lời giải chi tiết
\(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{{x^2} + 3x + 2}}{{x + 1}}}&{{\rm{\;khi\;}}x > - 1}\\{ - 2x + m}&{{\rm{\;khi\;}}x \le - 1}\end{array}} \right.\)
\(f\left( x \right) = \frac{{{x^2} + 3x + 2}}{{x + 1}}\,khi\,x > - 1\) liên tục trên \(\left( { - 1; + \infty } \right)\)
\(f\left( x \right) = - 2x + m\,\,khi\,x < - 1\) liên tục trên \(\left( { - \infty ; - 1} \right)\)
\(f\left( { - 1} \right) = - 2\left( { - 1} \right) + m\, = m + 2\)
\(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left( { - 2x + m} \right)\,\, = m + 2\)
\(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{{x^2} + 3x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {x + 2} \right) = - 1 + 2 = 1\)
Hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{{x^2} + 3x + 2}}{{x + 1}}}&{{\rm{\;khi\;}}x > - 1}\\{ - 2x + m}&{{\rm{\;khi\;}}x \le - 1}\end{array}} \right.\) liên tục trên \(\mathbb{R} \Leftrightarrow m + 2 = 1 \Leftrightarrow m = - 1\)
Chọn D
Bài 8 trang 67 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 8 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 8 trang 67 SBT Toán 11 - Kết nối tri thức:
Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1
Lời giải:
f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)
f'(x) = 6x + 2 - 0
f'(x) = 6x + 2
Đề bài: Tính đạo hàm của hàm số g(x) = (x2 + 1) / (x - 1)
Lời giải:
g'(x) = [d/dx (x2 + 1) * (x - 1) - (x2 + 1) * d/dx (x - 1)] / (x - 1)2
g'(x) = [2x * (x - 1) - (x2 + 1) * 1] / (x - 1)2
g'(x) = (2x2 - 2x - x2 - 1) / (x - 1)2
g'(x) = (x2 - 2x - 1) / (x - 1)2
Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm sách giáo khoa, sách bài tập, đề thi và lời giải chi tiết. Chúng tôi cam kết cung cấp cho các em những thông tin chính xác, dễ hiểu và hữu ích nhất. Hãy truy cập Tusach.vn để đồng hành cùng chúng tôi trên con đường chinh phục tri thức!
| Công thức | Đạo hàm |
|---|---|
| f(x) = c (hằng số) | f'(x) = 0 |
| f(x) = xn | f'(x) = nxn-1 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập