Tusach.vn xin giới thiệu đáp án chi tiết bài tập 7.17 trang 31 sách bài tập Toán 11 Kết nối tri thức. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác và đầy đủ nhất để hỗ trợ các em học tập tốt môn Toán 11.
Cho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông tâm (O) và các cạnh đều bằng ({rm{a}}).
Đề bài
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\) và các cạnh đều bằng \({\rm{a}}\).
a) Chứng minh rằng \(SO \bot \left( {ABCD} \right)\).
b) Tính góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SBD} \right)\).
c) Gọi \(M\) là trung điểm của cạnh \(SC\) và \(\alpha \) là góc giữa đường thẳng \(OM\) và mặt phẳng\(\left( {SBC} \right)\). Tính \({\rm{sin}}\alpha \).
Phương pháp giải - Xem chi tiết
a) Chứng minh \(SO\) vuông góc với hai đường thẳng cắt nhau nằm trên \(ABCD\) rồi suy ra \(SO \bot \left( {ABCD} \right)\).
b) Chứng minh \(AO \bot \left( {SBD} \right)\).
Tìm hình chiếu vuông góc của \(SA\) trên mặt phẳng \(\left( {SBD} \right)\), do đó góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SBD} \right)\) bằng góc giữa hai đường thẳng \(SA\) và hình chiếu của nó.
c) Kẻ \(OK \bot BC\) tại \(K,OH \bot SK\) tại \(H\) thì ta chứng minh \(OH \bot \left( {SBC} \right)\),
Tìm hình chiếu vuông góc của \(OM\) trên mặt phẳng \(\left( {SBC} \right)\).
Góc giữa đường thẳng \(OM\) và mặt phẳng \(\left( {SBC} \right)\) bằng góc giữa hai đường thẳng \(OM\) và hình chiếu của nó.
Áp dụng tỉ số lượng giác cho tam giác vuông để tính góc.
Lời giải chi tiết

a) Có SA = SB = SC = SD = AB = BC = CD = DA = a.
Vì O là trung điểm của AC và BD nên SO vừa là đường trung tuyến, vừa là đường cao của hai tam giác cân SAC và SBD.
Ta có: \(SO \bot AC\); \(SO \bot BD\) nên \(SO \bot \left( {ABCD} \right)\).
b) Vì \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AO\); mà \(AO \bot BD\) (hai đường chéo hình vuông) nên \(AO \bot \left( {SBD} \right)\).
Vì \(AO \bot \left( {SBD} \right)\) nên O là hình chiếu vuông góc của A trên mặt phẳng (SBD), do đó SO là hình chiếu vuông góc của SO trên mặt phẳng (SBD).
Góc giữa đường thẳng SA và mặt phẳng (SBD) bằng góc giữa hai đường thẳng SA và SO. Mà \(\left( {SA,SO} \right) = \widehat {ASO}\) nên góc giữa đường thẳng SA và mặt phẳng (SBD) bằng góc \(\widehat {ASO}\). Xét tam giác SAC có
Có \(\left\{ \begin{array}{l}S{A^2} + S{C^2} = {a^2} + {a^2} = 2{a^2}\\A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2}\end{array} \right. \Rightarrow S{A^2} + S{C^2} = A{C^2} \Rightarrow SA \bot SC\) (định lí Pythagore đảo), suy ra tam giác SAC vuông cân tại \(S\) và \(\widehat {ASO} = {45^o}\). Vậy góc giữa đường thẳng SA và mặt phẳng (SBD) bằng \({45^o}\).
c) Kẻ \(OK \bot BC\) tại K, \(OH \bot SK\) tại H.
Có \(\left\{ \begin{array}{l}SO \bot (ABCD) \Rightarrow SO \bot BC\\OK \bot BC\end{array} \right. \Rightarrow BC \bot (SOK) \Rightarrow BC \bot OH\).
Mà \(\left\{ \begin{array}{l}BC \bot OH\\SK \bot OH\end{array} \right. \Rightarrow OH \bot (SBC)\), hay H là hình chiếu của O trên mặt phẳng (SBC).
Suy ra HM là hình chiếu vuông góc của OM trên mặt phẳng (SBC), do đó góc giữa đường thẳng OM và mặt phẳng (SBC) bằng góc giữa hai đường thẳng OM và MH, mà \(\left( {OM,MH} \right) = \widehat {OMH}\) nên góc giữa đường thẳng OM và mặt phẳng (SBC) bằng góc \(\widehat {{\rm{OMH}}}\).
Vì tam giác SAC vuông cân tại S có đường cao SO nên OA = OC = SO.
Do đó, tam giác SOC vuông cân tại O, ta lại có OM = SM = MC = \(\frac{{SC}}{2} = \frac{a}{2}\).
\(OK = \frac{a}{2}\); \(SO = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\); \(SK = \sqrt {S{B^2} - B{K^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\).
Tam giác SOK vuông tại O, đường cao \({\rm{OH}}\) nên \({\rm{OH}}{\rm{.SK = SO}}{\rm{.OK}} \Leftrightarrow {\rm{OH}} = \frac{{{\rm{SO}} \cdot {\rm{OK}}}}{{SK}} = \frac{{a\sqrt 6 }}{6}\).
Vì tam giác OMH vuông tại H nên \({\rm{sin}}\alpha {\rm{\;}} = {\rm{sin}}\widehat {OMH} = \frac{{OH}}{{OM}} = \frac{{\sqrt 6 }}{3}\).
Bài 7.17 trang 31 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và dễ hiểu, giúp các em hiểu rõ cách làm bài và áp dụng vào các bài tập tương tự.
Bài tập 7.17 yêu cầu tính đạo hàm của hàm số và tìm các điểm cực trị của hàm số. Để giải bài tập này, học sinh cần nắm vững các công thức đạo hàm cơ bản và các quy tắc tính đạo hàm của hàm hợp, hàm số lượng giác, hàm mũ, hàm logarit.
Để giải bài tập này, chúng ta thực hiện các bước sau:
Ví dụ, giả sử hàm số là f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:
Để giải các bài tập về đạo hàm một cách hiệu quả, các em nên:
Đạo hàm là một khái niệm quan trọng trong toán học, có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật. Việc học tốt đạo hàm giúp các em:
Hy vọng với lời giải chi tiết và những lời khuyên trên, các em sẽ tự tin hơn khi giải bài tập 7.17 trang 31 sách bài tập Toán 11 Kết nối tri thức và đạt kết quả tốt trong môn học. Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục kiến thức!
Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại để lại bình luận bên dưới. Chúng tôi sẽ cố gắng trả lời sớm nhất có thể.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập