1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1.28 trang 24 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 1.28 trang 24 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 1.28 trang 24 SBT Toán 11 - Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết bài 1.28 trang 24 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu hơn về kiến thức và rèn luyện kỹ năng giải toán.

Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Tìm các giá trị của x để giá trị tương ứng của các hàm số sau bằng nhau:

Đề bài

Tìm các giá trị của x để giá trị tương ứng của các hàm số sau bằng nhau:

a) \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\)

b) \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 1.28 trang 24 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

a) Sử dụng cách giải phương trình \(\sin x = m\) (1)

+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.

+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha = m\).

Khi đó, phương trình (1) tương đương với:

\(\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:

\(\sin x = \sin {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^0} + k{360^0}\\x = {180^0} - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

- Nếu u, v là các biểu thức của x thì: \(\sin u = \sin v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = \pi - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

b) Sử dụng cách giải phương tình \(\cos \,x = m\) (2)

+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.

+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\cos \,\alpha = m\).

Khi đó, phương trình (1) tương đương với:

\(\cos x = m \Leftrightarrow \cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:

\(\cos x = \cos {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}\cos = {\alpha ^0} + k{360^0}\\\cos = - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

- Nếu u, v là các biểu thức của x thì: \(\cos u = \cos v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

a) Giá trị tương ứng của hai hàm số \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\) bằng nhau khi

\(\cos \left( {2x - \frac{\pi }{3}} \right) = \cos \left( {x - \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} = x - \frac{\pi }{4} + k2\pi \\2x - \frac{\pi }{3} = - \left( {x - \frac{\pi }{4}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - \pi }}{{12}} + k2\pi \\x = \frac{{7\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

b) Giá trị tương ứng của hai hàm số \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\) bằng nhau khi

\(\sin \left( {3x - \frac{\pi }{4}} \right) = \sin \left( {x - \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}3x - \frac{\pi }{4} = x - \frac{\pi }{6} + k2\pi \\3x - \frac{\pi }{4} = \pi - \left( {x - \frac{\pi }{6} + } \right)k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{24}} + k\pi \\x = \frac{{17\pi }}{{48}} + k\frac{\pi }{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Giải bài 1.28 trang 24 SBT Toán 11 - Kết nối tri thức: Tổng quan

Bài 1.28 trang 24 sách bài tập Toán 11 Kết nối tri thức thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán thực tế.

Nội dung bài tập 1.28

Bài 1.28 thường bao gồm các dạng bài tập sau:

  • Xác định các yếu tố của parabol (a, b, c).
  • Tìm tọa độ đỉnh của parabol.
  • Tìm phương trình trục đối xứng của parabol.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán liên quan đến ứng dụng của hàm số bậc hai.

Lời giải chi tiết bài 1.28 trang 24 SBT Toán 11 - Kết nối tri thức

Để giải bài 1.28 trang 24 SBT Toán 11 Kết nối tri thức, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Xác định hàm số bậc hai có dạng y = ax2 + bx + c.
  2. Bước 2: Tính delta (Δ) = b2 - 4ac.
  3. Bước 3: Xác định số nghiệm của phương trình bậc hai dựa vào giá trị của delta:
    • Nếu Δ > 0: Phương trình có hai nghiệm phân biệt.
    • Nếu Δ = 0: Phương trình có nghiệm kép.
    • Nếu Δ < 0: Phương trình vô nghiệm.
  4. Bước 4: Tính tọa độ đỉnh của parabol: xđỉnh = -b / (2a), yđỉnh = -Δ / (4a).
  5. Bước 5: Tìm phương trình trục đối xứng của parabol: x = xđỉnh.
  6. Bước 6: Xác định khoảng đồng biến, nghịch biến của hàm số dựa vào dấu của a.
  7. Bước 7: Vẽ đồ thị hàm số.

Ví dụ minh họa

Giả sử hàm số y = x2 - 4x + 3. Ta thực hiện các bước sau:

  1. a = 1, b = -4, c = 3.
  2. Δ = (-4)2 - 4 * 1 * 3 = 16 - 12 = 4.
  3. Δ > 0, phương trình có hai nghiệm phân biệt.
  4. xđỉnh = -(-4) / (2 * 1) = 2, yđỉnh = -4 / (4 * 1) = -1.
  5. Phương trình trục đối xứng: x = 2.
  6. Hàm số đồng biến trên khoảng (2, +∞) và nghịch biến trên khoảng (-∞, 2).

Lưu ý khi giải bài tập

  • Luôn kiểm tra kỹ các điều kiện của bài toán.
  • Sử dụng công thức một cách chính xác.
  • Vẽ đồ thị hàm số để kiểm tra lại kết quả.
  • Rèn luyện thường xuyên để nắm vững kiến thức và kỹ năng.

Tusach.vn - Nguồn tài liệu học tập Toán 11 uy tín

Tusach.vn cung cấp đầy đủ lời giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 11 Kết nối tri thức. Ngoài ra, chúng tôi còn cung cấp các bài giảng video, bài tập trắc nghiệm và các tài liệu học tập khác để giúp các em học Toán 11 hiệu quả hơn. Hãy truy cập Tusach.vn ngay hôm nay để khám phá!

Công thứcMô tả
Δ = b2 - 4acTính delta để xác định số nghiệm của phương trình bậc hai.
xđỉnh = -b / (2a)Tính hoành độ đỉnh của parabol.
yđỉnh = -Δ / (4a)Tính tung độ đỉnh của parabol.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN