1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1.18 trang 18 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 1.18 trang 18 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 1.18 trang 18 Sách bài tập Toán 11 - Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết bài 1.18 trang 18 Sách bài tập Toán 11 - Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu hơn về kiến thức và rèn luyện kỹ năng giải toán.

tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Xét tính chẵn lẻ của các hàm số sau:

Đề bài

Xét tính chẵn lẻ của các hàm số sau:

a) \(y = \frac{{\cos 2x}}{{{x^3}}}\);

b) \(y = x - \sin 3x\);

c) \(y = \sqrt {1 + \cos x} \);

d) \(y = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 1.18 trang 18 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Bước 1: Tìm tập xác định của hàm số, xét xem với mọi \(x \in D\), \( - x \in D\) hay không.

Bước 2: Xét \(f( - x)\)

+) Nếu \(f( - x) = f(x)\) thì đó là hàm số chẵn.

+) Nếu \(f( - x) = - f(x)\) thì đó là hàm số lẻ.

+) Nếu không rơi vào 2 trường hợp trên thì đó là hàm số không chẵn không lẻ.

Lời giải chi tiết

a) Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \).

Nếu kí hiệu \(f(x) = \frac{{\cos 2x}}{{{x^3}}}\) thì với mọi \(x \in D\), ta có:

\( - x \in D\) và \(f( - x) = \frac{{\cos 2( - x)}}{{{{( - x)}^3}}} = - \frac{{\cos 2x}}{{{x^3}}} = f(x).\)

Vậy hàm số đã cho là hàm số lẻ.

b) Tập xác định: \(D = \mathbb{R}\)

Nếu kí hiệu \(f(x) = x - \sin 3x\) thì với mọi \(x \in D\), ta có:

\( - x \in D\) và \(f(x) = - x - \sin 3( - x) = - (x - \sin 3x) = f(x)\).

Vậy hàm số đã cho là hàm số lẻ.

c) Tập xác định: \(D = \mathbb{R}\)

Nếu kí hiệu \(f(x) = \sqrt {1 + \cos x} \) thì với mọi\(x \in D\), ta có:

\( - x \in D\) và \(f( - x) = \sqrt {1 + \cos ( - x)} = \sqrt {1 + \cos x} = f(x)\).

Vậy hàm số đã cho là hàm số chẵn.

d) Tập xác định: \(D = \mathbb{R}\)

Nếu kí hiệu \(f(x) = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right)\) thì với mọi \(x \in D\), ta có:

\( - x \in D\) và \(f( - x) = 1 + \cos ( - x)\sin \left( {\frac{{3\pi }}{2} - 2( - x)} \right) = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right) = f(x)\)

Vậy hàm số đã cho là hàm số chẵn.

Giải bài 1.18 trang 18 Sách bài tập Toán 11 - Kết nối tri thức: Tổng quan

Bài 1.18 trang 18 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.

Nội dung chi tiết bài 1.18

Bài 1.18 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định vectơ: Yêu cầu học sinh xác định vectơ dựa trên các điểm cho trước hoặc các phép toán vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ: Cộng, trừ, nhân vectơ với một số thực.
  • Dạng 3: Chứng minh đẳng thức vectơ: Sử dụng các tính chất của vectơ để chứng minh các đẳng thức cho trước.
  • Dạng 4: Ứng dụng vectơ trong hình học: Giải các bài toán liên quan đến hình học phẳng, sử dụng vectơ để biểu diễn các yếu tố hình học và chứng minh các mối quan hệ.

Lời giải chi tiết bài 1.18 trang 18

Để giúp các em hiểu rõ hơn về cách giải bài 1.18, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 1.18, ví dụ):

Câu a)

Đề bài: Cho tam giác ABC. Tìm vectơ \overrightarrow{AB}.

Lời giải:\overrightarrow{AB} là vectơ có điểm gốc là A và điểm cuối là B. Để xác định vectơ này, ta cần biết tọa độ của điểm A và điểm B. Giả sử A(xA, yA) và B(xB, yB) thì \overrightarrow{AB} = (xB - xA, yB - yA).

Câu b)

Đề bài: Cho hai vectơ \overrightarrow{a} = (1, 2)\overrightarrow{b} = (-3, 4). Tính \overrightarrow{a} + \overrightarrow{b}.

Lời giải:\overrightarrow{a} + \overrightarrow{b} = (1 + (-3), 2 + 4) = (-2, 6).

Mẹo giải bài tập vectơ hiệu quả

  1. Nắm vững định nghĩa và tính chất của vectơ: Đây là nền tảng để giải quyết mọi bài toán liên quan đến vectơ.
  2. Sử dụng hình vẽ minh họa: Hình vẽ giúp ta hình dung rõ hơn về các vectơ và mối quan hệ giữa chúng.
  3. Biến đổi vectơ một cách linh hoạt: Sử dụng các quy tắc cộng, trừ, nhân vectơ để biến đổi các biểu thức vectơ cho phù hợp với yêu cầu của bài toán.
  4. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 11, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11 - Kết nối tri thức
  • Sách bài tập Toán 11 - Kết nối tri thức
  • Các trang web học Toán trực tuyến uy tín
  • Các video bài giảng Toán 11 trên YouTube

Kết luận

Hy vọng với lời giải chi tiết và các mẹo giải bài tập vectơ hiệu quả trên đây, các em học sinh sẽ tự tin hơn khi giải bài 1.18 trang 18 Sách bài tập Toán 11 - Kết nối tri thức. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN