Chào các em học sinh! Tusach.vn xin giới thiệu bài giải chi tiết bài 1.11 trang 10 sách bài tập Toán 11 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng nhất, hỗ trợ các em trong quá trình học tập môn Toán.
Cho (cos 2x = - frac{4}{5}) với (frac{pi }{4} < x < frac{pi }{2})
Đề bài
Cho \(\cos 2x = - \frac{4}{5}\) với \(\frac{\pi }{4} < x < \frac{\pi }{2}\)
Tính \(\sin x,\cos x,\sin \left( {x + \frac{\pi }{3}} \right),\cos \left( {2x - \frac{\pi }{4}} \right)\).
Phương pháp giải - Xem chi tiết
Dựa vào điều kiện về góc x, ta xét dấu \(\sin x\), \(\cos x\).
Áp dụng công thức hạ bậc: \({\sin ^2}x = \frac{{1 - \cos 2x}}{2}\), \({\cos ^2}x = \frac{{1 + \cos 2x}}{2}\).
Áp dụng công thức nhân đôi: \(\sin 2x = 2\sin x\cos x\) và công thức cộng:
\(\sin (a + b) = \sin a\cos b + \cos a\sin b\)
\(\cos (a - b) = \cos a\cos b + \sin a\sin b\).
Lời giải chi tiết
Vì \(\frac{\pi }{4} < x < \frac{\pi }{2}\) nên \(\sin x > 0\), \(\cos x > 0\). Áp dụng công thức hạ bậc ta có
\({\cos ^2}x = \frac{{1 + \cos 2x}}{2} = \frac{{1 + - \frac{4}{5}}}{2} = \frac{1}{{10}} \Rightarrow \cos x = \frac{1}{{\sqrt {10} }}.\)
\({\sin ^2}x = \frac{{1 - \cos 2x}}{2} = \frac{{1 - - \frac{4}{5}}}{2} = \frac{9}{{10}} \Rightarrow \sin x = \frac{3}{{\sqrt {10} }}.\)
Áp dụng công thức cộng ta có
\(\sin \left( {x + \frac{\pi }{3}} \right) = \sin x\cos \frac{\pi }{3} + \cos x\sin \frac{\pi }{3} = \frac{3}{{\sqrt {10} }}.\frac{1}{2} + \frac{1}{{\sqrt {10} }}.\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 3 }}{{2\sqrt {10} }}.\)
Lại có \(\sin 2x = 2\sin x\cos x = 2.\frac{3}{{\sqrt {10} }}.\frac{1}{{\sqrt {10} }} = \frac{6}{{10}}\).
\(\cos \left( {2x - \frac{\pi }{4}} \right) = \cos 2x\cos \frac{\pi }{4} + \sin 2x\sin \frac{\pi }{4} = - \frac{4}{5}.\frac{{\sqrt 2 }}{2} + \frac{6}{{10}}.\frac{{\sqrt 2 }}{2} = - \frac{{\sqrt 2 }}{{10}}.\)
Bài 1.11 trang 10 sách bài tập Toán 11 Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này thường tập trung vào việc vận dụng các kiến thức về hàm số bậc hai, điều kiện xác định của hàm số, và các phép biến đổi hàm số để giải quyết các bài toán cụ thể.
Thông thường, bài 1.11 sẽ yêu cầu học sinh:
Để giải bài 1.11 trang 10 SBT Toán 11 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Bài tập: Tìm tập xác định của hàm số y = √(2x - 1) / (x - 3)
Giải:
Để hàm số y xác định, cần có hai điều kiện:
Vậy tập xác định của hàm số là D = [1/2; 3) ∪ (3; +∞)
Khi giải bài tập Toán 11, các em cần:
Tusach.vn luôn cập nhật và cung cấp các bài giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 11 Kết nối tri thức. Hãy truy cập tusach.vn để học tốt môn Toán và đạt kết quả cao trong các kỳ thi!
| Bài | Trang | Liên kết |
|---|---|---|
| 1.1 | 6 | Link bài 1.1 |
| 1.2 | 7 | Link bài 1.2 |
| 1.11 | 10 | Link bài 1.11 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập